Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITAET FRANKFURT AM MAIN
Country Germany
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACOPS
Project Advanced Coherent Ultrafast Laser Pulse Stacking
Researcher (PI) Jens Limpert
Host Institution (HI) FRIEDRICH-SCHILLER-UNIVERSITAT JENA
Country Germany
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Summary
"An important driver of scientific progress has always been the envisioning of applications far beyond existing technological capabilities. Such thinking creates new challenges for physicists, driven by the groundbreaking nature of the anticipated application. In the case of laser physics, one of these applications is laser wake-field particle acceleration and possible future uses thereof, such as in collider experiments, or for medical applications such as cancer treatment. To accelerate electrons and positrons to TeV-energies, a laser architecture is required that allows for the combination of high efficiency, Petawatt peak powers, and Megawatt average powers. Developing such a laser system would be a challenging task that might take decades of aggressive research, development, and, most important, revolutionary approaches and innovative ideas.
The goal of the ACOPS project is to develop a compact, efficient, scalable, and cost-effective high-average and high-peak power ultra-short pulse laser concept.
The proposed approach to this goal relies on the spatially and temporally separated amplification of ultrashort laser pulses in waveguide structures, followed by coherent combination into a single train of pulses with increased average power and pulse energy. This combination can be realized through the coherent addition of the output beams of spatially separated amplifiers, combined with the pulse stacking of temporally separated pulses in passive enhancement cavities, employing a fast-switching element as cavity dumper.
Therefore, the three main tasks are the development of kW-class high-repetition-rate driving lasers, the investigation of non-steady state pulse enhancement in passive cavities, and the development of a suitable dumping element.
If successful, the proposed concept would undoubtedly provide a tool that would allow researchers to surpass the current limits in high-field physics and accelerator science."
Max ERC Funding
1 881 040 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CHROMOTHRIPSIS
Project Dissecting the Molecular Mechanism of Catastrophic DNA Rearrangement in Cancer
Researcher (PI) Jan Oliver Korbel
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Country Germany
Call Details Starting Grant (StG), LS2, ERC-2013-StG
Summary Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Summary
Recent cancer genome analyses have led to the discovery of a process involving massive genome structural rearrangement (SR) formation in a one-step, cataclysmic event, coined chromothripsis. The term chromothripsis (chromo from chromosome; thripsis for shattering into pieces) stands for a hypothetical process in which individual chromosomes are pulverised, resulting in a multitude of fragments, some of which are lost to the cell whereas others are erroneously rejoined. Compelling evidence was presented that chromothripsis plays a crucial role in the development, or progression of a notable subset of human cancers – thus, tumorigensis models involving gradual acquisitions of alterations may need to be revised in these cancers.
Presently, chromothripsis lacks a mechanistic basis. We recently showed that in childhood medulloblastoma brain tumours driven by Sonic Hedgehog (Shh) signalling, chromothripsis is linked with predisposing TP53 mutations. Thus, rather than occurring in isolation, chromothripsis appears to be prone to happen in conjunction with (or instigated by) gradually acquired alterations, or in the context of active signalling pathways, the inference of which may lead to further mechanistic insights. Using such rationale, I propose to dissect the mechanism behind chromothripsis using interdisciplinary approaches. First, we will develop a computational approach to accurately detect chromothripsis. Second, we will use this approach to link chromothripsis with novel factors and contexts. Third, we will develop highly controllable cell line-based systems to test concrete mechanistic hypotheses, thereby taking into account our data on linked factors and contexts. Fourth, we will generate transcriptome data to monitor pathways involved in inducing chromothripsis, and such involved in coping with the massive SRs occurring. We will also combine findings from all these approaches to build a comprehensive model of chromothripsis and its associated pathways.
Max ERC Funding
1 471 964 €
Duration
Start date: 2014-04-01, End date: 2019-01-31
Project acronym COMOTION
Project Controlling the Motion of Complex Molecules and Particles
Researcher (PI) Jochen Kuepper
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Country Germany
Call Details Consolidator Grant (CoG), PE4, ERC-2013-CoG
Summary "The main objective of COMOTION is to enable novel experiments for the investigation of the intrinsic properties of large molecules, including biological samples like proteins, viruses, and small cells
-X-ray free-electron lasers have enabled the observation of near-atomic-resolution structures in diffraction- before-destruction experiments, for instance, of isolated mimiviruses and of proteins from microscopic crystals. The goal to record molecular movies with spatial and temporal atomic-resolution (femtoseconds and picometers) of individual molecules is near.
-The investigation of ultrafast, sub-femtosecond electron dynamics in small molecules is providing first results. Its extension to large molecules promises the unraveling of charge migration and energy transport in complex (bio)molecules.
-Matter-wave experiments of large molecules, with currently up to some hundred atoms, are testing the limits of quantum mechanics, particle-wave duality, and coherence. These metrology experiments also allow the precise measurement of molecular properties.
The principal obstacle for these and similar experiments in molecular sciences is the controlled production of samples of identical molecules in the gas phase. We will develop novel concepts and technologies for the manipulation of complex molecules, ranging from amino acids to proteins, viruses, nano-objects, and small cells: We will implement new methods to inject complex molecules into vacuum, to rapidly cool them, and to manipulate the motion of these cold gas-phase samples using combinations of external electric and electromagnetic fields. These external-field handles enable the spatial separation of molecules according to size, shape, and isomer.
The generated controlled samples are ideally suited for the envisioned precision experiments. We will exploit them to record atomic-resolution molecular movies using the European XFEL, as well as to investigate the limits of quantum mechanics using matter-wave interferometry."
Summary
"The main objective of COMOTION is to enable novel experiments for the investigation of the intrinsic properties of large molecules, including biological samples like proteins, viruses, and small cells
-X-ray free-electron lasers have enabled the observation of near-atomic-resolution structures in diffraction- before-destruction experiments, for instance, of isolated mimiviruses and of proteins from microscopic crystals. The goal to record molecular movies with spatial and temporal atomic-resolution (femtoseconds and picometers) of individual molecules is near.
-The investigation of ultrafast, sub-femtosecond electron dynamics in small molecules is providing first results. Its extension to large molecules promises the unraveling of charge migration and energy transport in complex (bio)molecules.
-Matter-wave experiments of large molecules, with currently up to some hundred atoms, are testing the limits of quantum mechanics, particle-wave duality, and coherence. These metrology experiments also allow the precise measurement of molecular properties.
The principal obstacle for these and similar experiments in molecular sciences is the controlled production of samples of identical molecules in the gas phase. We will develop novel concepts and technologies for the manipulation of complex molecules, ranging from amino acids to proteins, viruses, nano-objects, and small cells: We will implement new methods to inject complex molecules into vacuum, to rapidly cool them, and to manipulate the motion of these cold gas-phase samples using combinations of external electric and electromagnetic fields. These external-field handles enable the spatial separation of molecules according to size, shape, and isomer.
The generated controlled samples are ideally suited for the envisioned precision experiments. We will exploit them to record atomic-resolution molecular movies using the European XFEL, as well as to investigate the limits of quantum mechanics using matter-wave interferometry."
Max ERC Funding
1 982 500 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym ENREMOS
Project Enantioselective Reactions on Model Chirally Modified Surfaces
Researcher (PI) Swetlana Schauermann
Host Institution (HI) CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Country Germany
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for production of enantiopure pharmaceuticals. A molecular-level understanding of enantioselective processes on chiral surfaces is an importance prerequisite for the rational design of new enantiospecific catalysts. With the research outlined in this proposal we are aiming at a fundamental level understanding of the structure of chirally modified surfaces, the bonding of the prochiral substrate on the chiral media and the details of the kinetics and dynamics of enantioselective surface reactions. A full mechanistic picture can be obtained if these aspects will be understood both on the extended single crystal surfaces, mimicking a local interaction of the modifier-substrate complexes with a metal, as well as on the small chirally modified nanoparticles that more accurately resemble the structural properties and high catalytic activity of practically relevant powdered supported catalyst. To achieve these atomistic insights, we propose to apply a combination of ultrahigh vacuum (UHV) based methods for studying reaction kinetics and dynamics (multi-molecular beam techniques) and in-situ surface spectroscopic and microscopic tools on well-defined model surfaces consisting of metal nanoparticles supported on thin single crystalline oxide films. Complementary, the catalytic behaviour of these chirally modified model surfaces will be investigated under ambient pressure conditions with enantiospecific detection of the reaction products that will enable detailed atomistic insights into structure-reactivity relationships.
Summary
Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for production of enantiopure pharmaceuticals. A molecular-level understanding of enantioselective processes on chiral surfaces is an importance prerequisite for the rational design of new enantiospecific catalysts. With the research outlined in this proposal we are aiming at a fundamental level understanding of the structure of chirally modified surfaces, the bonding of the prochiral substrate on the chiral media and the details of the kinetics and dynamics of enantioselective surface reactions. A full mechanistic picture can be obtained if these aspects will be understood both on the extended single crystal surfaces, mimicking a local interaction of the modifier-substrate complexes with a metal, as well as on the small chirally modified nanoparticles that more accurately resemble the structural properties and high catalytic activity of practically relevant powdered supported catalyst. To achieve these atomistic insights, we propose to apply a combination of ultrahigh vacuum (UHV) based methods for studying reaction kinetics and dynamics (multi-molecular beam techniques) and in-situ surface spectroscopic and microscopic tools on well-defined model surfaces consisting of metal nanoparticles supported on thin single crystalline oxide films. Complementary, the catalytic behaviour of these chirally modified model surfaces will be investigated under ambient pressure conditions with enantiospecific detection of the reaction products that will enable detailed atomistic insights into structure-reactivity relationships.
Max ERC Funding
1 589 736 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym FOPS-water
Project Fundamentals Of Photocatalytic Splitting of Water
Researcher (PI) Eleonora Hendrika Gertruda Mezger-Backus
Host Institution (HI) Klinik Max Planck Institut für Psychiatrie
Country Germany
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Hydrogen produced by sunlight is a very promising, environmentally-friendly energy source as an alternative for increasingly scarce and polluting fossil fuels. Since the discovery of hydrogen production by photocatalytic water dissociation on a titanium dioxide (TiO2) electrode 40 years ago, much research has been aimed at increasing the process efficiency. Remarkably, insights into how water is bound to the catalyst and into the dynamics of the photodissociation reaction, have been scarce up to now, due to the lack of suitable techniques to interrogate water at the interface. The aim of this proposal is to provide these insights by looking at specifically the molecules at the interface, before, during and after their photo-reaction. With the surface sensitive spectroscopic technique sum-frequency generation (SFG) we can determine binding motifs of the ~monolayer of water at the interface, quantify the heterogeneity of the water molecules at the interface and follow changes in water molecular structure and dynamics at the interface during the reaction. The structure of interfacial water will be studied using steady-state SFG; the dynamics of the water photodissociation will be investigated using pump-SFG probe spectroscopy. At variable delay times after the pump pulse the probe pulses will interrogate the interface and detect the reaction intermediates and products. Thanks to recent developments of SFG it should now be possible to determine the structure of water at the TiO2 interface and to unravel the dynamics of the photodissocation process. These insights will allow us to relate the interfacial TiO2-water structure and dynamics to reactivity of the photocatalyst, and to bridge the gap between the fundamentals of the process at the molecular level to the efficiency of the photocatalys. The results will be essential for developing cheaper and more efficient photocatalysts for the production of hydrogen.
Summary
Hydrogen produced by sunlight is a very promising, environmentally-friendly energy source as an alternative for increasingly scarce and polluting fossil fuels. Since the discovery of hydrogen production by photocatalytic water dissociation on a titanium dioxide (TiO2) electrode 40 years ago, much research has been aimed at increasing the process efficiency. Remarkably, insights into how water is bound to the catalyst and into the dynamics of the photodissociation reaction, have been scarce up to now, due to the lack of suitable techniques to interrogate water at the interface. The aim of this proposal is to provide these insights by looking at specifically the molecules at the interface, before, during and after their photo-reaction. With the surface sensitive spectroscopic technique sum-frequency generation (SFG) we can determine binding motifs of the ~monolayer of water at the interface, quantify the heterogeneity of the water molecules at the interface and follow changes in water molecular structure and dynamics at the interface during the reaction. The structure of interfacial water will be studied using steady-state SFG; the dynamics of the water photodissociation will be investigated using pump-SFG probe spectroscopy. At variable delay times after the pump pulse the probe pulses will interrogate the interface and detect the reaction intermediates and products. Thanks to recent developments of SFG it should now be possible to determine the structure of water at the TiO2 interface and to unravel the dynamics of the photodissocation process. These insights will allow us to relate the interfacial TiO2-water structure and dynamics to reactivity of the photocatalyst, and to bridge the gap between the fundamentals of the process at the molecular level to the efficiency of the photocatalys. The results will be essential for developing cheaper and more efficient photocatalysts for the production of hydrogen.
Max ERC Funding
1 498 800 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym IMMUNEMESIS
Project The Plant Immune System: Epistasis and Fitness-Tradeoffs
Researcher (PI) Detlef Weigel
Host Institution (HI) Klinik Max Planck Institut für Psychiatrie
Country Germany
Call Details Advanced Grant (AdG), LS2, ERC-2013-ADG
Summary A fundamental question in biology is how multicellular organisms distinguish self and non-self. The requirement to specifically recognize only foreign cells and molecules constrains the diversification of the immune system, resulting in conflicts between effective detection of enemies, adaptive changes in the cellular machinery and mating with divergent genotypes from the same species. In plants, there is generally a trade-off between immunity and growth, and immune system activation is often associated with impaired development. There are many examples of autoimmunity in hybrids, caused by a gene product from one parent erroneously interpreting a gene product from the other parent as foreign. This is not surprising, given the extraordinary diversity of many immune genes. On the other hand, hybrid vigor, or heterosis, is commonly observed in F1 progeny from two inbred parents, and this is widely exploited in breeding. Thus, it is also of practical importance to understand how outcrossing affects the plant immune system. We hypothesize that overt hybrid autoimmunity represents only the tip of the iceberg, and that there are many more subtle non-additive genetic interactions that affect both the plant immune system and growth. We therefore propose a comprehensive research program to dissect epistatic interactions with effects on plant growth and health. Specifically, we will conduct genomics-enabled, systematic forward genetic studies with natural genotypes of the model plant Arabidopsis thaliana and its outcrossing sister species A. lyrata. This will be complemented by experiments that will link diversity of microbial communities with that of the immune system in natural plant populations. The systematic understanding of forces that shape the distribution of immune gene alleles in the wild will have important implications for engineering disease resistance in crops, by helping to chose the best ensembles of resistance genes.
Summary
A fundamental question in biology is how multicellular organisms distinguish self and non-self. The requirement to specifically recognize only foreign cells and molecules constrains the diversification of the immune system, resulting in conflicts between effective detection of enemies, adaptive changes in the cellular machinery and mating with divergent genotypes from the same species. In plants, there is generally a trade-off between immunity and growth, and immune system activation is often associated with impaired development. There are many examples of autoimmunity in hybrids, caused by a gene product from one parent erroneously interpreting a gene product from the other parent as foreign. This is not surprising, given the extraordinary diversity of many immune genes. On the other hand, hybrid vigor, or heterosis, is commonly observed in F1 progeny from two inbred parents, and this is widely exploited in breeding. Thus, it is also of practical importance to understand how outcrossing affects the plant immune system. We hypothesize that overt hybrid autoimmunity represents only the tip of the iceberg, and that there are many more subtle non-additive genetic interactions that affect both the plant immune system and growth. We therefore propose a comprehensive research program to dissect epistatic interactions with effects on plant growth and health. Specifically, we will conduct genomics-enabled, systematic forward genetic studies with natural genotypes of the model plant Arabidopsis thaliana and its outcrossing sister species A. lyrata. This will be complemented by experiments that will link diversity of microbial communities with that of the immune system in natural plant populations. The systematic understanding of forces that shape the distribution of immune gene alleles in the wild will have important implications for engineering disease resistance in crops, by helping to chose the best ensembles of resistance genes.
Max ERC Funding
2 499 900 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym MassQ
Project Massive-Object Quantum Physics
Researcher (PI) Roman Schnabel
Host Institution (HI) UNIVERSITAET HAMBURG
Country Germany
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary The world of quantum physics is usually associated with the microscopic cosmos of atoms and photons. In principle, but so far without any demonstration, even heavy objects can exhibit the distinguished properties of quantum world particles. In 1935, Einstein, Podolsky and Rosen (EPR) challenged a particular prediction of quantum theory saying that two particles can exist in a so-called entangled state in which the two particles do not have individually defined (‘local’) positions and momenta. Most interestingly, the existence of entangled states was subsequently fully confirmed in experiments with photons and atoms.
The new project MassQ aims to test and to confirm quantum theory in the macroscopic world of massive, human-world sized objects by realizing an EPR entanglement experiment with heavy mirrors. Two kg-sized mirrors will be cooled to low temperature and their centre of mass motion driven by radiation pressure of intense laser light in such a way that the mirrors will lose their individually defined positions and momenta. As a result, their joint motion will form a unified massive quantum object.
This project will realize a fundamental test of quantum theory in the so far unexplored regime of human-world sized objects. Recent advances in gravitational wave detector research and in opto-mechanics make this project feasible. The vision of this project points even further into the future. This project aims to lay the basis for a completely new class of physics experiments. Mirrors with kilogram masses have a proper gravitational field and cause a space-time curvature in their vicinity. This way, in principle, the dynamics of two heavy entangled mirrors need to be described not only by quantum theory but also by general relativity. Today it is completely unclear what the results of such a new class of physics experiments will be. Undoubtedly, they are important to illuminate the deep connection between the two most successful theories in physics.
Summary
The world of quantum physics is usually associated with the microscopic cosmos of atoms and photons. In principle, but so far without any demonstration, even heavy objects can exhibit the distinguished properties of quantum world particles. In 1935, Einstein, Podolsky and Rosen (EPR) challenged a particular prediction of quantum theory saying that two particles can exist in a so-called entangled state in which the two particles do not have individually defined (‘local’) positions and momenta. Most interestingly, the existence of entangled states was subsequently fully confirmed in experiments with photons and atoms.
The new project MassQ aims to test and to confirm quantum theory in the macroscopic world of massive, human-world sized objects by realizing an EPR entanglement experiment with heavy mirrors. Two kg-sized mirrors will be cooled to low temperature and their centre of mass motion driven by radiation pressure of intense laser light in such a way that the mirrors will lose their individually defined positions and momenta. As a result, their joint motion will form a unified massive quantum object.
This project will realize a fundamental test of quantum theory in the so far unexplored regime of human-world sized objects. Recent advances in gravitational wave detector research and in opto-mechanics make this project feasible. The vision of this project points even further into the future. This project aims to lay the basis for a completely new class of physics experiments. Mirrors with kilogram masses have a proper gravitational field and cause a space-time curvature in their vicinity. This way, in principle, the dynamics of two heavy entangled mirrors need to be described not only by quantum theory but also by general relativity. Today it is completely unclear what the results of such a new class of physics experiments will be. Undoubtedly, they are important to illuminate the deep connection between the two most successful theories in physics.
Max ERC Funding
1 566 210 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym MesoFermi
Project Mesoscopic Fermi Gases
Researcher (PI) Henning Moritz
Host Institution (HI) UNIVERSITAET HAMBURG
Country Germany
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary This proposal brings together the fields of ultracold Fermi gases and of mesoscopic systems. Starting with a two-dimensional (2D) Fermi gas, we will imprint small-scale potential structures onto the atoms. Thus, a mesoscopic system embedded in a 2D reservoir is produced.
Specifically, we will imprint optical dipole potentials varying on a micrometre scale onto a 2D gas of 6Li atoms. Due to the widely different energy scales, the entropy of the atoms in the mesoscopic structures will be massively reduced as compared to the reservoir atoms. The atoms in the mesoscopic structures will be characterised by an innovative detection scheme with single atom sensitivity. The combination of mesoscopic potentials, single atom detection and entropy reduction will put us in a unique position to access new regimes of many-body physics.
First, we will investigate a mesoscopic realisation of the 2D Hubbard model. Beyond the study of the fermionic Mott insulating phase and its excitations, the possibility to study staggered Hubbard models and create domain structures is a very attractive prospect. Most importantly, the massive entropy reduction inherent to the mesoscopic approach will enable us to observe antiferromagnetic ordering, the major milestone central to further progress in the field.
Going beyond periodic structures, we will focus on the direct creation of mesoscopic model systems. In a bottom-up approach, we will realise a plaquette consisting of 2x2 sites, the essential building block for models of d-wave superconductivity. The creation of 1D structures with local defects will open the possibility to study phenomena such as spin-charge separation, Friedel oscillations and the rectification of atomic transport. Finally, the physics of open quantum systems will become accessible when studying the interaction between mesoscopic system and reservoir. In conclusion, I believe that the proposed research programme will bring a new level of functionality to the field.
Summary
This proposal brings together the fields of ultracold Fermi gases and of mesoscopic systems. Starting with a two-dimensional (2D) Fermi gas, we will imprint small-scale potential structures onto the atoms. Thus, a mesoscopic system embedded in a 2D reservoir is produced.
Specifically, we will imprint optical dipole potentials varying on a micrometre scale onto a 2D gas of 6Li atoms. Due to the widely different energy scales, the entropy of the atoms in the mesoscopic structures will be massively reduced as compared to the reservoir atoms. The atoms in the mesoscopic structures will be characterised by an innovative detection scheme with single atom sensitivity. The combination of mesoscopic potentials, single atom detection and entropy reduction will put us in a unique position to access new regimes of many-body physics.
First, we will investigate a mesoscopic realisation of the 2D Hubbard model. Beyond the study of the fermionic Mott insulating phase and its excitations, the possibility to study staggered Hubbard models and create domain structures is a very attractive prospect. Most importantly, the massive entropy reduction inherent to the mesoscopic approach will enable us to observe antiferromagnetic ordering, the major milestone central to further progress in the field.
Going beyond periodic structures, we will focus on the direct creation of mesoscopic model systems. In a bottom-up approach, we will realise a plaquette consisting of 2x2 sites, the essential building block for models of d-wave superconductivity. The creation of 1D structures with local defects will open the possibility to study phenomena such as spin-charge separation, Friedel oscillations and the rectification of atomic transport. Finally, the physics of open quantum systems will become accessible when studying the interaction between mesoscopic system and reservoir. In conclusion, I believe that the proposed research programme will bring a new level of functionality to the field.
Max ERC Funding
1 236 060 €
Duration
Start date: 2013-10-01, End date: 2018-09-30
Project acronym MULTISCOPE
Project Multidimensional Ultrafast Time-Interferometric Spectroscopy of Coherent Phenomena in all Environments
Researcher (PI) Tobias Manuel Brixner
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Country Germany
Call Details Consolidator Grant (CoG), PE4, ERC-2013-CoG
Summary "We propose to develop and apply novel methods of nonlinear spectroscopy to investigate the significance and consequences of coherent effects for a variety of photophysical and photochemical molecular processes. We will use coherent two-dimensional (2D) spectroscopy as an ideal tool to study electronic coherences.
Quantum mechanics as described by the Schrödinger equation is fully coherent: The phase of a wavefunction evolves deterministically in the time-dependent case. However, observations are restricted to reduced “systems” coupled to an “environment.” The resulting transition from coherent to incoherent behavior on an ultrafast timescale has many yet unexplored consequences, e.g. for transport in photosynthesis, photovoltaics or other molecular “nanomaterials.”
In contrast to conventional 2D spectroscopy, we will not measure the coherently emitted field within a four-wave mixing process but rather implement a range of incoherent observables (ion mass spectra, fluorescence, and photoelectrons). Yet we can still extract all the desired information using “phase cycling” with collinear pulse sequences from a femtosecond pulse shaper. This opens up a new range of interdisciplinary experiments and will allow for the first time a direct nonlinear-spectroscopic comparison of molecular systems in all states of matter. Specifically, we will realize 2D spectroscopy in molecular beams, liquids, low-temperature solids, and on surfaces including heterogeneous and nanostructured samples. Tuning the external couplings will help elucidating the role of the environment in electronic (de)coherence phenomena.
Furthermore, we will combine 2D spectroscopy with subdiffraction spatial resolution using photoemission electron microscopy (PEEM). This enables us to map transport in molecular aggregates and other heterogeneous nanosystems in time and space on a nanometer length scale. Thus we access the intersection between the domains of electronics and nanophotonics."
Summary
"We propose to develop and apply novel methods of nonlinear spectroscopy to investigate the significance and consequences of coherent effects for a variety of photophysical and photochemical molecular processes. We will use coherent two-dimensional (2D) spectroscopy as an ideal tool to study electronic coherences.
Quantum mechanics as described by the Schrödinger equation is fully coherent: The phase of a wavefunction evolves deterministically in the time-dependent case. However, observations are restricted to reduced “systems” coupled to an “environment.” The resulting transition from coherent to incoherent behavior on an ultrafast timescale has many yet unexplored consequences, e.g. for transport in photosynthesis, photovoltaics or other molecular “nanomaterials.”
In contrast to conventional 2D spectroscopy, we will not measure the coherently emitted field within a four-wave mixing process but rather implement a range of incoherent observables (ion mass spectra, fluorescence, and photoelectrons). Yet we can still extract all the desired information using “phase cycling” with collinear pulse sequences from a femtosecond pulse shaper. This opens up a new range of interdisciplinary experiments and will allow for the first time a direct nonlinear-spectroscopic comparison of molecular systems in all states of matter. Specifically, we will realize 2D spectroscopy in molecular beams, liquids, low-temperature solids, and on surfaces including heterogeneous and nanostructured samples. Tuning the external couplings will help elucidating the role of the environment in electronic (de)coherence phenomena.
Furthermore, we will combine 2D spectroscopy with subdiffraction spatial resolution using photoemission electron microscopy (PEEM). This enables us to map transport in molecular aggregates and other heterogeneous nanosystems in time and space on a nanometer length scale. Thus we access the intersection between the domains of electronics and nanophotonics."
Max ERC Funding
2 669 124 €
Duration
Start date: 2014-04-01, End date: 2019-03-31