Project acronym CRADLE
Project Cancer treatment during pregnancy: from fetal safety to maternal efficacy
Researcher (PI) Frederic Amant
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary The evolution in drug regulation of the last 50 years has left pregnant women and their fetuses orphaned. This is particularly problematic for cancer during pregnancy, which raises a difficult and conflicting medical ethical decision process and which has recently become increasingly frequent. In 2012 we published the first prospective study indicating that antenatal exposure to cancer treatment can overall be considered safe. Building on this proof of concept, the current proposal wants to take a groundbreaking step towards developing a standard of care for cancer during pregnancy by addressing –in an integrated fashion- the challenges at the level of the fetus, the mother and the fetomaternal barrier. At the core of this proposal lies an international registry of pregnant women with cancer, along with a registry of their children, and biobanks of maternal, placental, cord blood and tumoral tissues. Research track ‘child’ aims to deliver robust evidence of fetal safety. Research track ‘mother’ aims to address the emerging concerns in the oncological management of the mother, and specifically, the possible distinct biology of pregnancy-associated breast cancer, the most frequent cancer type in pregnancy. The research approach includes large-scale clinical follow-up studies along with laboratory studies on patient biomaterials, including pharmacological investigations and RNA-sequencing studies. Complementary to these studies is research track ‘placenta’ in which cutting-edge models of human placental research are used to address the poorly understood physiological basis of the placental barrier function in this specific situation. This ambitious program will rely on a multidisciplinary team of experts. Not only may the scientific deliverables of this proposal constitute a major step forward to the well-being of both mother and fetus in a pregnancy complicated by cancer, the methodological approach may also provide critical impetus to further research in this field.
Summary
The evolution in drug regulation of the last 50 years has left pregnant women and their fetuses orphaned. This is particularly problematic for cancer during pregnancy, which raises a difficult and conflicting medical ethical decision process and which has recently become increasingly frequent. In 2012 we published the first prospective study indicating that antenatal exposure to cancer treatment can overall be considered safe. Building on this proof of concept, the current proposal wants to take a groundbreaking step towards developing a standard of care for cancer during pregnancy by addressing –in an integrated fashion- the challenges at the level of the fetus, the mother and the fetomaternal barrier. At the core of this proposal lies an international registry of pregnant women with cancer, along with a registry of their children, and biobanks of maternal, placental, cord blood and tumoral tissues. Research track ‘child’ aims to deliver robust evidence of fetal safety. Research track ‘mother’ aims to address the emerging concerns in the oncological management of the mother, and specifically, the possible distinct biology of pregnancy-associated breast cancer, the most frequent cancer type in pregnancy. The research approach includes large-scale clinical follow-up studies along with laboratory studies on patient biomaterials, including pharmacological investigations and RNA-sequencing studies. Complementary to these studies is research track ‘placenta’ in which cutting-edge models of human placental research are used to address the poorly understood physiological basis of the placental barrier function in this specific situation. This ambitious program will rely on a multidisciplinary team of experts. Not only may the scientific deliverables of this proposal constitute a major step forward to the well-being of both mother and fetus in a pregnancy complicated by cancer, the methodological approach may also provide critical impetus to further research in this field.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym GlycoTarget
Project Exploring the targeted delivery of biopharmaceuticals enabled by glycosylation control
Researcher (PI) Nico Luc Marc Callewaert
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary Most biotechnological therapeutics used in the clinic today and under current development, are of protein nature. Eukaryotic expression systems (such as yeasts and mammalian cells) for these therapeutic proteins add carbohydrate moieties (glycans) to the proteins, and these glycans strongly modulate the protein's in vivo biodistribution and therapeutic efficacy. Until recently, no adequate tools were available to accurately control glycosylation structure in these expression systems, but bio-engineering research in our lab and elsewhere has now largely overcome this problem.
In the GlycoTarget ERC Consolidator grant project, we aim at exploring the relation between the structure of the glycans on therapeutic proteins and the in vivo targeting properties of these modified proteins to different tissues/cells/subcellular organelles.
As highly medically relevant test cases for this exploration, we have selected three diseases with strong unmet therapeutic need, that could potentially be treated with glyco-targeted biopharmaceuticals through three different routes of protein delivery: progressive liver disease (intravenous), allergic asthma (subcutaneous immunization) and active tuberculosis (intrapulmonary delivery).
Summary
Most biotechnological therapeutics used in the clinic today and under current development, are of protein nature. Eukaryotic expression systems (such as yeasts and mammalian cells) for these therapeutic proteins add carbohydrate moieties (glycans) to the proteins, and these glycans strongly modulate the protein's in vivo biodistribution and therapeutic efficacy. Until recently, no adequate tools were available to accurately control glycosylation structure in these expression systems, but bio-engineering research in our lab and elsewhere has now largely overcome this problem.
In the GlycoTarget ERC Consolidator grant project, we aim at exploring the relation between the structure of the glycans on therapeutic proteins and the in vivo targeting properties of these modified proteins to different tissues/cells/subcellular organelles.
As highly medically relevant test cases for this exploration, we have selected three diseases with strong unmet therapeutic need, that could potentially be treated with glyco-targeted biopharmaceuticals through three different routes of protein delivery: progressive liver disease (intravenous), allergic asthma (subcutaneous immunization) and active tuberculosis (intrapulmonary delivery).
Max ERC Funding
1 994 760 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ImmunoBioSynth
Project Synergistic engineering of anti-tumor immunity by synthetic biomaterials
Researcher (PI) Bruno DE GEEST
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Immunotherapy holds the potential to dramatically improve the curative prognosis of cancer patients. However, despite significant progress, a huge gap remains to be bridged to gain board success in the clinic. A first limiting factor in cancer immunotherapy is the low response rate in large fraction of the patients and an unmet need exists for more efficient - potentially synergistic - immunotherapies that improve upon or complement existing strategies. The second limiting factor is immune-related toxicity that can cause live-threatening situations as well as seriously impair the quality of life of patients. Therefore, there is an urgent need for safer immunotherapies that allow for a more target-specific engineering of the immune system. Strategies to engineer the immune system via a materials chemistry approach, i.e. immuno-engineering, have gathered major attention over the past decade and could complement or replace biologicals, and holds promise to contribute to resolving the current issues faced by the immunotherapy field. I hypothesize that synthetic biomaterials can play an important role in anti-cancer immunotherapy with regard to synergistic, safe, but potent, instruction of innate and adaptive anti-cancer immunity and to revert the tumor microenvironment from an immune-suppressive into an immune-susceptible state. Hereto, the overall scientific objective of this proposal is to fully embrace the potential of immuno-engineering and develop several highly synergistic biomaterials strategies to engineer the immune system to fight cancer. I will develop a series of biomaterials and address a number of fundamental questions with regard to optimal biomaterial design for immuno-engineering. Based on these findings, I will elucidate those therapeutic strategies that lead to synergistic engineering of innate and adaptive immunity in combination with remodeling the tumor microenvironment from an immune-suppressive into an immune-susceptible state.
Summary
Immunotherapy holds the potential to dramatically improve the curative prognosis of cancer patients. However, despite significant progress, a huge gap remains to be bridged to gain board success in the clinic. A first limiting factor in cancer immunotherapy is the low response rate in large fraction of the patients and an unmet need exists for more efficient - potentially synergistic - immunotherapies that improve upon or complement existing strategies. The second limiting factor is immune-related toxicity that can cause live-threatening situations as well as seriously impair the quality of life of patients. Therefore, there is an urgent need for safer immunotherapies that allow for a more target-specific engineering of the immune system. Strategies to engineer the immune system via a materials chemistry approach, i.e. immuno-engineering, have gathered major attention over the past decade and could complement or replace biologicals, and holds promise to contribute to resolving the current issues faced by the immunotherapy field. I hypothesize that synthetic biomaterials can play an important role in anti-cancer immunotherapy with regard to synergistic, safe, but potent, instruction of innate and adaptive anti-cancer immunity and to revert the tumor microenvironment from an immune-suppressive into an immune-susceptible state. Hereto, the overall scientific objective of this proposal is to fully embrace the potential of immuno-engineering and develop several highly synergistic biomaterials strategies to engineer the immune system to fight cancer. I will develop a series of biomaterials and address a number of fundamental questions with regard to optimal biomaterial design for immuno-engineering. Based on these findings, I will elucidate those therapeutic strategies that lead to synergistic engineering of innate and adaptive immunity in combination with remodeling the tumor microenvironment from an immune-suppressive into an immune-susceptible state.
Max ERC Funding
2 000 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym MaGRaTh
Project Matter and strong-field gravity: New frontiers in Einstein’s theory
Researcher (PI) VITOR MANUEL DOS SANTOS CARDOSO
Host Institution (HI) INSTITUTO SUPERIOR TECNICO
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Gravity is the weakest but the most intriguing fundamental interaction in the Universe. In the last decades a formidable intellectual effort has shown that the full-fledged geometric nature of gravity offers much more than a beautiful description and understanding of all stellar and galactic. In the quest for the ultimate theory of gravity, new and spectacular connections between high-energy physics, astrophysics, cosmology and theoretical physics have emerged. Triggered by breakthroughs at the observational, experimental and conceptual levels, strong gravity physics is experiencing a Golden Age, making it one of the most active fields of research of the 21st century.
My group in Lisbon has been involved in groundbreaking research into the nature of strong-field effects in curved spacetime with applications in various fields, thus establishing international leadership in the field. This proposal aims at understanding,
via perturbative techniques and full-blown nonlinear evolutions, the strong-field regime of gravity, and includes challenging nonlinear evolutions describing gravitational collapse, compact binary inspirals and collisions in the presence of fundamental fields. The proposed programme will significantly advance our knowledge of Einstein's field equations and their role in fundamental questions (e.g. cosmic censorship, hoop conjecture, spacetime stability, no hair theorems), but also its interplay with high energy, astro and particle physics (testing the precise nature of the interaction between compact objects and matter --such as dark matter candidates or accretion disks-- and its imprint on gravitational wave emission, understanding gravitational-led turbulence,etc).
This is a cross-cutting and multidisciplinary program with an impact on our understanding of gravity at all scales, on our perception of black hole-powered phenomena and on gravitational-wave and particle physics.
Summary
Gravity is the weakest but the most intriguing fundamental interaction in the Universe. In the last decades a formidable intellectual effort has shown that the full-fledged geometric nature of gravity offers much more than a beautiful description and understanding of all stellar and galactic. In the quest for the ultimate theory of gravity, new and spectacular connections between high-energy physics, astrophysics, cosmology and theoretical physics have emerged. Triggered by breakthroughs at the observational, experimental and conceptual levels, strong gravity physics is experiencing a Golden Age, making it one of the most active fields of research of the 21st century.
My group in Lisbon has been involved in groundbreaking research into the nature of strong-field effects in curved spacetime with applications in various fields, thus establishing international leadership in the field. This proposal aims at understanding,
via perturbative techniques and full-blown nonlinear evolutions, the strong-field regime of gravity, and includes challenging nonlinear evolutions describing gravitational collapse, compact binary inspirals and collisions in the presence of fundamental fields. The proposed programme will significantly advance our knowledge of Einstein's field equations and their role in fundamental questions (e.g. cosmic censorship, hoop conjecture, spacetime stability, no hair theorems), but also its interplay with high energy, astro and particle physics (testing the precise nature of the interaction between compact objects and matter --such as dark matter candidates or accretion disks-- and its imprint on gravitational wave emission, understanding gravitational-led turbulence,etc).
This is a cross-cutting and multidisciplinary program with an impact on our understanding of gravity at all scales, on our perception of black hole-powered phenomena and on gravitational-wave and particle physics.
Max ERC Funding
1 588 817 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym METAPTPs
Project PROTEIN TYROSINE PHOSPHATASES IN METABOLIC DISEASES: OXIDATION, DYSFUNCTION AND THERAPEUTIC POTENTIAL
Researcher (PI) Esteban GURZOV AMARELO
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Consolidator Grant (CoG), LS7, ERC-2018-COG
Summary Diabetes mellitus is characterised by hyperglycaemia caused by an absolute or relative insulin deficiency. The global prevalence of diabetes has reached more than 410 million individuals, underscoring the need for novel therapeutic strategies targeting the pathology as a multi-organ disease. Protein tyrosine phosphatases (PTPs) constitute a superfamily of enzymes that dephosphorylate tyrosine-phosphorylated proteins and oppose the actions of protein tyrosine kinases. My previous studies and preliminary data suggest that PTPs act as molecular switches for key signalling events in the development of diabetes, i.e. insulin/glucose/cytokine signalling. Dysregulation of these pathways results in metabolic consequences that are cell-specific. Oxidative stress abrogates the nucleophilic properties of the PTP active site and induces conformational changes that inhibit PTP activity and prevent substrate-binding. I have recently developed an innovative proteomic approach to quantify PTP oxidation in vivo and demonstrated that this occurs in liver/pancreas under pathological conditions, including obesity and inflammation. In this proposal, I aim to fully characterise the activity and oxidation status of PTPs in dysfunctional metabolic relevant cells in obesity and diabetes. Importantly, the crucial role of PTPs make them promising candidates for the treatment of metabolic disorders. I hypothesise that specific antioxidants, diets and/or adenovirus will restore PTP function and ameliorate the metabolic deleterious defects in pre-clinical studies. Over the next 5 years, I aim to:
• Identify the major oxidised PTPs in metabolic relevant tissues/cells in both obesity and diabetes.
• Determine the contribution of PTP inactivation in cellular responses to metabolic signalling in human samples.
• Assess the impact of tissue-specific PTP deficiency on the development of obesity and diabetes.
• Test novel therapeutic approaches targeting PTPs to prevent/reverse metabolic disorders.
Summary
Diabetes mellitus is characterised by hyperglycaemia caused by an absolute or relative insulin deficiency. The global prevalence of diabetes has reached more than 410 million individuals, underscoring the need for novel therapeutic strategies targeting the pathology as a multi-organ disease. Protein tyrosine phosphatases (PTPs) constitute a superfamily of enzymes that dephosphorylate tyrosine-phosphorylated proteins and oppose the actions of protein tyrosine kinases. My previous studies and preliminary data suggest that PTPs act as molecular switches for key signalling events in the development of diabetes, i.e. insulin/glucose/cytokine signalling. Dysregulation of these pathways results in metabolic consequences that are cell-specific. Oxidative stress abrogates the nucleophilic properties of the PTP active site and induces conformational changes that inhibit PTP activity and prevent substrate-binding. I have recently developed an innovative proteomic approach to quantify PTP oxidation in vivo and demonstrated that this occurs in liver/pancreas under pathological conditions, including obesity and inflammation. In this proposal, I aim to fully characterise the activity and oxidation status of PTPs in dysfunctional metabolic relevant cells in obesity and diabetes. Importantly, the crucial role of PTPs make them promising candidates for the treatment of metabolic disorders. I hypothesise that specific antioxidants, diets and/or adenovirus will restore PTP function and ameliorate the metabolic deleterious defects in pre-clinical studies. Over the next 5 years, I aim to:
• Identify the major oxidised PTPs in metabolic relevant tissues/cells in both obesity and diabetes.
• Determine the contribution of PTP inactivation in cellular responses to metabolic signalling in human samples.
• Assess the impact of tissue-specific PTP deficiency on the development of obesity and diabetes.
• Test novel therapeutic approaches targeting PTPs to prevent/reverse metabolic disorders.
Max ERC Funding
1 966 906 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym NANOBUBBLE
Project Laser-induced vapour nanobubbles for intracellular delivery of nanomaterials and treatment of biofilm infections
Researcher (PI) Kevin Braeckmans
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Lasers have found widespread application in medicine, such as for photothermal therapy. Gold nanoparticles (AuNPs), are often used as enhancers of the photothermal effect since they can efficiently absorb laser light and convert it into thermal energy. When absorbing intense nano- or picosecond laser pulses, AuNPs can become extremely hot and water vapor nanobubbles (VNBs) can emerge around these particles in tissue. A VNB will expand up to several hundred nm until the thermal energy from the AuNP is consumed, after which the bubble violently collapses, causing mechanical damage to neighbouring structures. In this project the aim is to make use of the disruptive mechanical force of VNBs to enable highly controlled and efficient delivery of macromolecules and nanoparticles in cells and biofilms. First, optical set-ups and microfluidics devices will be developed for high-throughput treatment of cells and biofilms. Second, VNBs will be used to achieve efficient cytosolic delivery of functional macromolecules in mammalian cells by cell membrane perforation or by inducing endosomal escape of endocytosed nanomedicine formulations that are functionalized with AuNPs. These concepts will be applied to tumorigenesis research, generation of induced pluripotent stem cells and modulation of effector T-cells for adoptive T-cell anti-cancer therapy. Third, contrast nanoparticles for cell imaging will be delivered into the cytosol of mammalian cells through VNB induced cell membrane perforation. This will enable more reliable in vivo imaging of labelled cells, labelling of subcellular structures for time-lapse microscopy and intracellular biosensing. Finally, [... confidential...] laser-induced VNBs will be used [... confidential...] for improved eradication of biofilms. This concept will be applied to biofilm infections in dental root canals and chronic wounds.
Summary
Lasers have found widespread application in medicine, such as for photothermal therapy. Gold nanoparticles (AuNPs), are often used as enhancers of the photothermal effect since they can efficiently absorb laser light and convert it into thermal energy. When absorbing intense nano- or picosecond laser pulses, AuNPs can become extremely hot and water vapor nanobubbles (VNBs) can emerge around these particles in tissue. A VNB will expand up to several hundred nm until the thermal energy from the AuNP is consumed, after which the bubble violently collapses, causing mechanical damage to neighbouring structures. In this project the aim is to make use of the disruptive mechanical force of VNBs to enable highly controlled and efficient delivery of macromolecules and nanoparticles in cells and biofilms. First, optical set-ups and microfluidics devices will be developed for high-throughput treatment of cells and biofilms. Second, VNBs will be used to achieve efficient cytosolic delivery of functional macromolecules in mammalian cells by cell membrane perforation or by inducing endosomal escape of endocytosed nanomedicine formulations that are functionalized with AuNPs. These concepts will be applied to tumorigenesis research, generation of induced pluripotent stem cells and modulation of effector T-cells for adoptive T-cell anti-cancer therapy. Third, contrast nanoparticles for cell imaging will be delivered into the cytosol of mammalian cells through VNB induced cell membrane perforation. This will enable more reliable in vivo imaging of labelled cells, labelling of subcellular structures for time-lapse microscopy and intracellular biosensing. Finally, [... confidential...] laser-induced VNBs will be used [... confidential...] for improved eradication of biofilms. This concept will be applied to biofilm infections in dental root canals and chronic wounds.
Max ERC Funding
2 236 250 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym PV-COAT
Project PROSTHETIC VALVE BIOACTIVE SURFACE COATING TO REDUCE THE PREVALENCE OF THROMBOSIS
Researcher (PI) Patrizio Lancellotti
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary Heart valve prostheses are currently among the most widely used cardiovascular devices. To maintain enduring optimal biomechanical properties, the mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation, which often leads to adverse reactions, i.e. higher risks of thromboembolism, hemorrhage, and hemolysis.
Continuing advances in heart valve prosthesis design and in techniques for implantation have improved the survival length and quality of life of patients who receive these devices. In an ongoing effort to develop a more durable and biocompatible heart valve prosthesis, researchers have used a variety of techniques to determine the suitability of given valve materials for a given implant application. In recent years, advances in polymer science have given rise to new ways of improving artificial cardiovascular devices biostability and hemocompatibility.
To date, no polymer coated mechanical prosthetic heart valve exists.
The present research project aims to improve the hemocompatibility and long-term in vivo performance of mechanical prosthetic heart valves by reducing contact-induced thrombosis through bioactive polymer prosthetic valve surface coating.
These new coated prosthetic heart valves will be designed for hemodynamic performance and durability similar to uncoated materials, combined with a greater thromboresistance, both in vitro and in animal studies.
With these promising advances, bioactive surface coated prosthetic heart valves could replace previous generation of prosthetic valves in the near future. The utmost perspective of the current project paves the way for the development of new bioactive coating for other implantable cardiovascular devices or materials.
Summary
Heart valve prostheses are currently among the most widely used cardiovascular devices. To maintain enduring optimal biomechanical properties, the mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation, which often leads to adverse reactions, i.e. higher risks of thromboembolism, hemorrhage, and hemolysis.
Continuing advances in heart valve prosthesis design and in techniques for implantation have improved the survival length and quality of life of patients who receive these devices. In an ongoing effort to develop a more durable and biocompatible heart valve prosthesis, researchers have used a variety of techniques to determine the suitability of given valve materials for a given implant application. In recent years, advances in polymer science have given rise to new ways of improving artificial cardiovascular devices biostability and hemocompatibility.
To date, no polymer coated mechanical prosthetic heart valve exists.
The present research project aims to improve the hemocompatibility and long-term in vivo performance of mechanical prosthetic heart valves by reducing contact-induced thrombosis through bioactive polymer prosthetic valve surface coating.
These new coated prosthetic heart valves will be designed for hemodynamic performance and durability similar to uncoated materials, combined with a greater thromboresistance, both in vitro and in animal studies.
With these promising advances, bioactive surface coated prosthetic heart valves could replace previous generation of prosthetic valves in the near future. The utmost perspective of the current project paves the way for the development of new bioactive coating for other implantable cardiovascular devices or materials.
Max ERC Funding
2 367 055 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym QUTE
Project Quantum Tensor Networks and Entanglement
Researcher (PI) Frank Paul Bernard Verstraete
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary One of the major challenges in theoretical physics is the development of systematic methods for describing and simulating quantum many body systems with strong interactions. Given the huge experimental progress and technological potential in manipulating strongly correlated atoms and electrons, there is a pressing need for such a better theory.
The study of quantum entanglement holds the promise of being a game changer for this question. By mapping out the entanglement structure of the low-energy wavefunctions of quantum spin systems on the lattice, the prototypical example of strongly correlated systems, we have found that the associated wavefunctions can be very well modeled by a novel class of variational wavefunctions, called tensor network states. Tensor networks are changing the ways in which strongly correlated systems can be simulated, classified and understood: as opposed to the usual many body methods, these tensor networks are generic and describe non-perturbative effects in a very natural way.
The goal of this proposal is to advance the scope and use of tensor networks in several directions, both from the numerical and theoretical point of view. We plan to study the differential geometric character of the manifold of tensor network states and the associated nonlinear differential equations of motion on it, develop post tensor network methods in the form of effective theories on top of the tensor network vacuum, study tensor networks in the context of lattice gauge theories and topologically ordered systems, and investigate the novel insights that tensor networks are providing to the renormalization group and the holographic principle.
Colloquially, we believe that tensor networks and the theory of entanglement provide a basic new vocabulary for describing strongly correlated quantum systems, and the main goal of this proposal is to develop the syntax and semantics of that new language.
Summary
One of the major challenges in theoretical physics is the development of systematic methods for describing and simulating quantum many body systems with strong interactions. Given the huge experimental progress and technological potential in manipulating strongly correlated atoms and electrons, there is a pressing need for such a better theory.
The study of quantum entanglement holds the promise of being a game changer for this question. By mapping out the entanglement structure of the low-energy wavefunctions of quantum spin systems on the lattice, the prototypical example of strongly correlated systems, we have found that the associated wavefunctions can be very well modeled by a novel class of variational wavefunctions, called tensor network states. Tensor networks are changing the ways in which strongly correlated systems can be simulated, classified and understood: as opposed to the usual many body methods, these tensor networks are generic and describe non-perturbative effects in a very natural way.
The goal of this proposal is to advance the scope and use of tensor networks in several directions, both from the numerical and theoretical point of view. We plan to study the differential geometric character of the manifold of tensor network states and the associated nonlinear differential equations of motion on it, develop post tensor network methods in the form of effective theories on top of the tensor network vacuum, study tensor networks in the context of lattice gauge theories and topologically ordered systems, and investigate the novel insights that tensor networks are providing to the renormalization group and the holographic principle.
Colloquially, we believe that tensor networks and the theory of entanglement provide a basic new vocabulary for describing strongly correlated quantum systems, and the main goal of this proposal is to develop the syntax and semantics of that new language.
Max ERC Funding
1 927 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym SpecMAT
Project Spectroscopy of exotic nuclei in a Magnetic Active Target
Researcher (PI) Riccardo Raabe
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary SpecMAT aims at providing crucial experimental information to answer key questions about the structure of atomic nuclei:
- What are the forces driving the shell structure in nuclei and how do they change in nuclei far from stability?
- What remains of the Z = 28 and N = 50 “magic numbers” in 78Ni?
- Do we understand shape coexistence in nuclei, and what are the mechanisms controlling its appearance?
The position of natural and “intruder” shells will be mapped in two critical regions, the neutron-rich nuclei around Z = 28 and the neutron-deficient nuclei around Z = 82. The centroids of the shell strength are derived from the complete spectroscopy of those systems in nucleon-transfer measurements. This method will be applied for the first time in the region of neutron-deficient Pb nuclei.
In SpecMAT (Spectroscopy of exotic nuclei in a Magnetic Active Target) a novel instrument will overcome the present challenges in performing such measurements with very weak beams of unstable nuclei. It combines high luminosity, high efficiency and a very large dynamic range and allows detection of both charged-particle and gamma-ray radiation. The instrument owns its remarkable performances to a number of advanced technologies concerning the use of electronics, gaseous detectors and gamma-ray detectors in a magnetic field.
The SpecMAT detector will be coupled to the HIE-ISOLDE facility for the production and post-acceleration of radioactive ion beams in construction at CERN in Geneva. HIE-ISOLDE will provide world-unique beams thanks to the use of the proton injector of the CERN complex.
If successful, SpecMAT at HIE-ISOLDE will produce specific results in nuclear structure which cannot be reached by other programmes elsewhere. Such results will have a significant impact on the present theories and models of the atomic nucleus.
Summary
SpecMAT aims at providing crucial experimental information to answer key questions about the structure of atomic nuclei:
- What are the forces driving the shell structure in nuclei and how do they change in nuclei far from stability?
- What remains of the Z = 28 and N = 50 “magic numbers” in 78Ni?
- Do we understand shape coexistence in nuclei, and what are the mechanisms controlling its appearance?
The position of natural and “intruder” shells will be mapped in two critical regions, the neutron-rich nuclei around Z = 28 and the neutron-deficient nuclei around Z = 82. The centroids of the shell strength are derived from the complete spectroscopy of those systems in nucleon-transfer measurements. This method will be applied for the first time in the region of neutron-deficient Pb nuclei.
In SpecMAT (Spectroscopy of exotic nuclei in a Magnetic Active Target) a novel instrument will overcome the present challenges in performing such measurements with very weak beams of unstable nuclei. It combines high luminosity, high efficiency and a very large dynamic range and allows detection of both charged-particle and gamma-ray radiation. The instrument owns its remarkable performances to a number of advanced technologies concerning the use of electronics, gaseous detectors and gamma-ray detectors in a magnetic field.
The SpecMAT detector will be coupled to the HIE-ISOLDE facility for the production and post-acceleration of radioactive ion beams in construction at CERN in Geneva. HIE-ISOLDE will provide world-unique beams thanks to the use of the proton injector of the CERN complex.
If successful, SpecMAT at HIE-ISOLDE will produce specific results in nuclear structure which cannot be reached by other programmes elsewhere. Such results will have a significant impact on the present theories and models of the atomic nucleus.
Max ERC Funding
1 944 900 €
Duration
Start date: 2014-06-01, End date: 2019-05-31
Project acronym StressGene
Project The Genetics of Morbidity and Survival in Response to Significant Life Stressors
Researcher (PI) Unnur VALDIMARSDÓTTIR
Host Institution (HI) HASKOLI ISLANDS
Call Details Consolidator Grant (CoG), LS7, ERC-2016-COG
Summary Significant life stressors – including death of loved ones, being diagnosed with a life-threatening illness, and exposure to natural disasters or violence – are well-documented risk factors of ill health, disability and premature mortality. Why some individuals remain healthy while others remiss to adverse symptoms, disease or death after exposure to such life stressors remains unclear. The overarching aim of this research program is to advance current understanding of the potential genetic contribution to varying trajectories of health following exposure to significant life stressors.
The program leverages the registries of major diseases and mortality covering the whole Icelandic nation (N=330.000) and the unique genetic- and genealogical resources at deCODE Genetics to perform genome-wide association studies (GWAS) on the varying risks of overall mortality and major diseases (including psychiatric disorders and cardiovascular disease) after loss of a family member or after receiving a cancer diagnosis. We will further seek to identify sequence variants associated with variation in symptoms of posttraumatic stress disorder (PTSD) in two highly traumatized cohorts: the SAGA cohort of 30.000 Icelandic women with high lifetime prevalence of violence exposure, as well as a cohort of 5.000 Swedes exposed to the 2004 SA-Asian Tsunami. This research program represents the first major attempt to address the potential genetic basis of varying somatic health outcomes after exposure to significant life stressors and, to our knowledge, one of the first comprehensive GWAS on PTSD in European populations.
Virtually everyone is at some point in their life exposed to significant life stressors or trauma; the knowledge gained from this comprehensive research program may facilitate early identification and refined, personalized interventions for the most vulnerable individuals of the large populations worldwide that inevitably will continue to be exposed to trauma.
Summary
Significant life stressors – including death of loved ones, being diagnosed with a life-threatening illness, and exposure to natural disasters or violence – are well-documented risk factors of ill health, disability and premature mortality. Why some individuals remain healthy while others remiss to adverse symptoms, disease or death after exposure to such life stressors remains unclear. The overarching aim of this research program is to advance current understanding of the potential genetic contribution to varying trajectories of health following exposure to significant life stressors.
The program leverages the registries of major diseases and mortality covering the whole Icelandic nation (N=330.000) and the unique genetic- and genealogical resources at deCODE Genetics to perform genome-wide association studies (GWAS) on the varying risks of overall mortality and major diseases (including psychiatric disorders and cardiovascular disease) after loss of a family member or after receiving a cancer diagnosis. We will further seek to identify sequence variants associated with variation in symptoms of posttraumatic stress disorder (PTSD) in two highly traumatized cohorts: the SAGA cohort of 30.000 Icelandic women with high lifetime prevalence of violence exposure, as well as a cohort of 5.000 Swedes exposed to the 2004 SA-Asian Tsunami. This research program represents the first major attempt to address the potential genetic basis of varying somatic health outcomes after exposure to significant life stressors and, to our knowledge, one of the first comprehensive GWAS on PTSD in European populations.
Virtually everyone is at some point in their life exposed to significant life stressors or trauma; the knowledge gained from this comprehensive research program may facilitate early identification and refined, personalized interventions for the most vulnerable individuals of the large populations worldwide that inevitably will continue to be exposed to trauma.
Max ERC Funding
1 998 544 €
Duration
Start date: 2017-06-01, End date: 2022-05-31