Project acronym AAMOT
Project Arithmetic of automorphic motives
Researcher (PI) Michael Harris
Host Institution (HI) INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Summary
The primary purpose of this project is to build on recent spectacular progress in the Langlands program to study the arithmetic properties of automorphic motives constructed in the cohomology of Shimura varieties. Because automorphic methods are available to study the L-functions of these motives, which include elliptic curves and certain families of Calabi-Yau varieties over totally real fields (possibly after base change), they represent the most accessible class of varieties for which one can hope to verify fundamental conjectures on special values of L-functions, including Deligne's conjecture and the Main Conjecture of Iwasawa theory. Immediate goals include the proof of irreducibility of automorphic Galois representations; the establishment of period relations for automorphic and potentially automorphic realizations of motives in the cohomology of distinct Shimura varieties; the construction of p-adic L-functions for these and related motives, notably adjoint and tensor product L-functions in p-adic families; and the geometrization of the p-adic and mod p Langlands program. All four goals, as well as the others mentioned in the body of the proposal, are interconnected; the final goal provides a bridge to related work in geometric representation theory, algebraic geometry, and mathematical physics.
Max ERC Funding
1 491 348 €
Duration
Start date: 2012-06-01, End date: 2018-05-31
Project acronym ADDECCO
Project Adaptive Schemes for Deterministic and Stochastic Flow Problems
Researcher (PI) Remi Abgrall
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Summary
The numerical simulation of complex compressible flow problem is still a challenge nowaday even for simple models. In our opinion, the most important hard points that need currently to be tackled and solved is how to obtain stable, scalable, very accurate, easy to code and to maintain schemes on complex geometries. The method should easily handle mesh refinement, even near the boundary where the most interesting engineering quantities have to be evaluated. Unsteady uncertainties in the model, for example in the geometry or the boundary conditions should represented efficiently.This proposal goal is to design, develop and evaluate solutions to each of the above problems. Our work program will lead to significant breakthroughs for flow simulations. More specifically, we propose to work on 3 connected problems: 1-A class of very high order numerical schemes able to easily deal with the geometry of boundaries and still can solve steep problems. The geometry is generally defined by CAD tools. The output is used to generate a mesh which is then used by the scheme. Hence, any mesh refinement process is disconnected from the CAD, a situation that prevents the spread of mesh adaptation techniques in industry! 2-A class of very high order numerical schemes which can utilize possibly solution dependant basis functions in order to lower the number of degrees of freedom, for example to compute accurately boundary layers with low resolutions. 3-A general non intrusive technique for handling uncertainties in order to deal with irregular probability density functions (pdf) and also to handle pdf that may evolve in time, for example thanks to an optimisation loop. The curse of dimensionality will be dealt thanks Harten's multiresolution method combined with sparse grid methods. Currently, and up to our knowledge, no scheme has each of these properties. This research program will have an impact on numerical schemes and industrial applications.
Max ERC Funding
1 432 769 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym ADORA
Project Asymptotic approach to spatial and dynamical organizations
Researcher (PI) Benoit PERTHAME
Host Institution (HI) SORBONNE UNIVERSITE
Call Details Advanced Grant (AdG), PE1, ERC-2016-ADG
Summary The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Summary
The understanding of spatial, social and dynamical organization of large numbers of agents is presently a fundamental issue in modern science. ADORA focuses on problems motivated by biology because, more than anywhere else, access to precise and many data has opened the route to novel and complex biomathematical models. The problems we address are written in terms of nonlinear partial differential equations. The flux-limited Keller-Segel system, the integrate-and-fire Fokker-Planck equation, kinetic equations with internal state, nonlocal parabolic equations and constrained Hamilton-Jacobi equations are among examples of the equations under investigation.
The role of mathematics is not only to understand the analytical structure of these new problems, but it is also to explain the qualitative behavior of solutions and to quantify their properties. The challenge arises here because these goals should be achieved through a hierarchy of scales. Indeed, the problems under consideration share the common feature that the large scale behavior cannot be understood precisely without access to a hierarchy of finer scales, down to the individual behavior and sometimes its molecular determinants.
Major difficulties arise because the numerous scales present in these equations have to be discovered and singularities appear in the asymptotic process which yields deep compactness obstructions. Our vision is that the complexity inherent to models of biology can be enlightened by mathematical analysis and a classification of the possible asymptotic regimes.
However an enormous effort is needed to uncover the equations intimate mathematical structures, and bring them at the level of conceptual understanding they deserve being given the applications motivating these questions which range from medical science or neuroscience to cell biology.
Max ERC Funding
2 192 500 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ALKAGE
Project Algebraic and Kähler geometry
Researcher (PI) Jean-Pierre, Raymond, Philippe Demailly
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Summary
The purpose of this project is to study basic questions in algebraic and Kähler geometry. It is well known that the structure of projective or Kähler manifolds is governed by positivity or negativity properties of the curvature tensor. However, many fundamental problems are still wide open. Since the mid 1980's, I have developed a large number of key concepts and results that have led to important progress in transcendental algebraic geometry. Let me mention the discovery of holomorphic Morse inequalities, systematic applications of L² estimates with singular hermitian metrics, and a much improved understanding of Monge-Ampère equations and of singularities of plurisuharmonic functions. My first goal will be to investigate the Green-Griffiths-Lang conjecture asserting that an entire curve drawn in a variety of general type is algebraically degenerate. The subject is intimately related to important questions concerning Diophantine equations, especially higher dimensional generalizations of Faltings' theorem - the so-called Vojta program. One can rely here on a breakthrough I made in 2010, showing that all such entire curves must satisfy algebraic differential equations. A second closely related area of research of this project is the analysis of the structure of projective or compact Kähler manifolds. It can be seen as a generalization of the classification theory of surfaces by Kodaira, and of the more recent results for dimension 3 (Kawamata, Kollár, Mori, Shokurov, ...) to other dimensions. My plan is to combine powerful recent results obtained on the duality of positive cohomology cones with an analysis of the instability of the tangent bundle, i.e. of the Harder-Narasimhan filtration. On these ground-breaking questions, I intend to go much further and to enhance my national and international collaborations. These subjects already attract many young researchers and postdocs throughout the world, and the grant could be used to create even stronger interactions.
Max ERC Funding
1 809 345 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym analysisdirac
Project The analysis of the Dirac operator: the hypoelliptic Laplacian and its applications
Researcher (PI) Jean-Michel Philippe Marie-José Bismut
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary This proposal is devoted to the applications of a new hypoelliptic Dirac operator,
whose analytic properties have been studied by Lebeau and myself. Its construction connects classical Hodge theory with the geodesic flow, and more generally any geometrically defined Hodge Laplacian with a dynamical system on the cotangent bundle. The proper description of this object can be given in analytic, index theoretic and probabilistic terms, which explains both its potential many applications, and also its complexity.
Summary
This proposal is devoted to the applications of a new hypoelliptic Dirac operator,
whose analytic properties have been studied by Lebeau and myself. Its construction connects classical Hodge theory with the geodesic flow, and more generally any geometrically defined Hodge Laplacian with a dynamical system on the cotangent bundle. The proper description of this object can be given in analytic, index theoretic and probabilistic terms, which explains both its potential many applications, and also its complexity.
Max ERC Funding
1 112 400 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym BLOWDISOL
Project "BLOW UP, DISPERSION AND SOLITONS"
Researcher (PI) Franck Merle
Host Institution (HI) UNIVERSITE DE CERGY-PONTOISE
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary "Many physical models involve nonlinear dispersive problems, like wave
or laser propagation, plasmas, ferromagnetism, etc. So far, the mathematical under-
standing of these equations is rather poor. In particular, we know little about the
detailed qualitative behavior of their solutions. Our point is that an apparent com-
plexity hides universal properties of these models; investigating and uncovering such
properties has started only recently. More than the equations themselves, these univer-
sal properties are essential for physical modelisation.
By considering several standard models such as the nonlinear Schrodinger, nonlinear
wave, generalized KdV equations and related geometric problems, the goal of this pro-
posal is to describe the generic global behavior of the solutions and the profiles which
emerge either for large time or by concentration due to strong nonlinear effects, if pos-
sible through a few relevant solutions (sometimes explicit solutions, like solitons). In
order to do this, we have to elaborate different mathematical tools depending on the
context and the specificity of the problems. Particular emphasis will be placed on
- large time asymptotics for global solutions, decomposition of generic solutions into
sums of decoupled solitons in non integrable situations,
- description of critical phenomenon for blow up in the Hamiltonian situation, stable
or generic behavior for blow up on critical dynamics, various relevant regularisations of
the problem,
- global existence for defocusing supercritical problems and blow up dynamics in the
focusing cases.
We believe that the PI and his team have the ability to tackle these problems at present.
The proposal will open whole fields of investigation in Partial Differential Equations in
the future, clarify and simplify our knowledge on the dynamical behavior of solutions
of these problems and provide Physicists some new insight on these models."
Summary
"Many physical models involve nonlinear dispersive problems, like wave
or laser propagation, plasmas, ferromagnetism, etc. So far, the mathematical under-
standing of these equations is rather poor. In particular, we know little about the
detailed qualitative behavior of their solutions. Our point is that an apparent com-
plexity hides universal properties of these models; investigating and uncovering such
properties has started only recently. More than the equations themselves, these univer-
sal properties are essential for physical modelisation.
By considering several standard models such as the nonlinear Schrodinger, nonlinear
wave, generalized KdV equations and related geometric problems, the goal of this pro-
posal is to describe the generic global behavior of the solutions and the profiles which
emerge either for large time or by concentration due to strong nonlinear effects, if pos-
sible through a few relevant solutions (sometimes explicit solutions, like solitons). In
order to do this, we have to elaborate different mathematical tools depending on the
context and the specificity of the problems. Particular emphasis will be placed on
- large time asymptotics for global solutions, decomposition of generic solutions into
sums of decoupled solitons in non integrable situations,
- description of critical phenomenon for blow up in the Hamiltonian situation, stable
or generic behavior for blow up on critical dynamics, various relevant regularisations of
the problem,
- global existence for defocusing supercritical problems and blow up dynamics in the
focusing cases.
We believe that the PI and his team have the ability to tackle these problems at present.
The proposal will open whole fields of investigation in Partial Differential Equations in
the future, clarify and simplify our knowledge on the dynamical behavior of solutions
of these problems and provide Physicists some new insight on these models."
Max ERC Funding
2 079 798 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym BREAD
Project Breaking the curse of dimensionality: numerical challenges in high dimensional analysis and simulation
Researcher (PI) Albert Cohen
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary "This project is concerned with problems that involve a very large number of variables, and whose efficient numerical treatment is challenged by the so-called curse of dimensionality, meaning that computational complexity increases exponentially in the variable dimension.
The PI intend to establish in his host institution a scientific leadership on the mathematical understanding and numerical treatment of these problems, and to contribute to the development of this area of research through international collaborations, organization of workshops and research schools, and training of postdocs and PhD students.
High dimensional problems are ubiquitous in an increasing number of areas of scientific computing, among which statistical or active learning theory, parametric and stochastic partial differential equations, parameter optimization in numerical codes. There is a high demand from the industrial world of efficient numerical methods for treating such problems.
The practical success of various numerical algorithms, that have been developed in recent years in these application areas, is often limited to moderate dimensional setting.
In addition, these developments tend to be, as a rule, rather problem specific and not always founded on a solid mathematical analysis.
The central scientific objectives of this project are therefore: (i) to identify fundamental mathematical principles behind overcoming the curse of dimensionality, (ii) to understand how these principles enter in relevant instances of the above applications, and (iii) based on the these principles beyond particular problem classes, to develop broadly applicable numerical strategies that benefit from such mechanisms.
The performances of these strategies should be provably independent of the variable dimension, and in that sense break the curse of dimensionality. They will be tested on both synthetic benchmark tests and real world problems coming from the afore-mentioned applications."
Summary
"This project is concerned with problems that involve a very large number of variables, and whose efficient numerical treatment is challenged by the so-called curse of dimensionality, meaning that computational complexity increases exponentially in the variable dimension.
The PI intend to establish in his host institution a scientific leadership on the mathematical understanding and numerical treatment of these problems, and to contribute to the development of this area of research through international collaborations, organization of workshops and research schools, and training of postdocs and PhD students.
High dimensional problems are ubiquitous in an increasing number of areas of scientific computing, among which statistical or active learning theory, parametric and stochastic partial differential equations, parameter optimization in numerical codes. There is a high demand from the industrial world of efficient numerical methods for treating such problems.
The practical success of various numerical algorithms, that have been developed in recent years in these application areas, is often limited to moderate dimensional setting.
In addition, these developments tend to be, as a rule, rather problem specific and not always founded on a solid mathematical analysis.
The central scientific objectives of this project are therefore: (i) to identify fundamental mathematical principles behind overcoming the curse of dimensionality, (ii) to understand how these principles enter in relevant instances of the above applications, and (iii) based on the these principles beyond particular problem classes, to develop broadly applicable numerical strategies that benefit from such mechanisms.
The performances of these strategies should be provably independent of the variable dimension, and in that sense break the curse of dimensionality. They will be tested on both synthetic benchmark tests and real world problems coming from the afore-mentioned applications."
Max ERC Funding
1 848 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym BRIDGES
Project Bridging Non-Equilibrium Problems: From the Fourier Law to Gene Expression
Researcher (PI) Jean-Pierre Eckmann
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Advanced Grant (AdG), PE1, ERC-2011-ADG_20110209
Summary My goal is to study several important open mathematical problems in non-equilibrium (NEQ) systems and to build a bridge between these problems and NEQ aspects of soft sciences, in particular biological questions. Traffic on this bridge is going to be two-way, the mathematics carrying a long history as a language of science towards the soft sciences, and the soft sciences fruitfully asking new questions and building new paradigms for mathematical research.
Out-of-equilibrium systems pose several fascinating problems: The Fourier law which says that resistance of a wire is proportional to its length is still presenting hard problems for research, and even the existence and the convergence to a NEQ steady state are continuously posing new puzzles, as do questions of smoothness and correlations of such states. These will be addressed with stochastic differential equations, and with particlescatterer systems, both canonical and grand-canonical. The latter are extensions of the well-known Lorentz gas and the study of hyperbolic billiards.
Another field where NEQ plays an important role is the study of glassy systems. They were studied with molecular dynamics (MD) but I have used a topological variant, which mimics astonishingly well what happens in MD simulations. The aim is to extend this to 3 dimensions, where new problems appear.
Finally, I will apply the NEQ studies to biological systems: How a system copes with the varying environment,adapting in this way to a novel type of NEQ. I will study networks of communication among neurons,which are like random graphs with the additional property of being embedded, and the arrangement of genes on chromosomes in such a way as to optimize the adaptation to the different cell types which must be produced using the same genetic information.
I will answer such questions with students and collaborators, who will specialize in the subprojects but will interact with my help across the common bridge.
Summary
My goal is to study several important open mathematical problems in non-equilibrium (NEQ) systems and to build a bridge between these problems and NEQ aspects of soft sciences, in particular biological questions. Traffic on this bridge is going to be two-way, the mathematics carrying a long history as a language of science towards the soft sciences, and the soft sciences fruitfully asking new questions and building new paradigms for mathematical research.
Out-of-equilibrium systems pose several fascinating problems: The Fourier law which says that resistance of a wire is proportional to its length is still presenting hard problems for research, and even the existence and the convergence to a NEQ steady state are continuously posing new puzzles, as do questions of smoothness and correlations of such states. These will be addressed with stochastic differential equations, and with particlescatterer systems, both canonical and grand-canonical. The latter are extensions of the well-known Lorentz gas and the study of hyperbolic billiards.
Another field where NEQ plays an important role is the study of glassy systems. They were studied with molecular dynamics (MD) but I have used a topological variant, which mimics astonishingly well what happens in MD simulations. The aim is to extend this to 3 dimensions, where new problems appear.
Finally, I will apply the NEQ studies to biological systems: How a system copes with the varying environment,adapting in this way to a novel type of NEQ. I will study networks of communication among neurons,which are like random graphs with the additional property of being embedded, and the arrangement of genes on chromosomes in such a way as to optimize the adaptation to the different cell types which must be produced using the same genetic information.
I will answer such questions with students and collaborators, who will specialize in the subprojects but will interact with my help across the common bridge.
Max ERC Funding
2 135 385 €
Duration
Start date: 2012-04-01, End date: 2017-07-31
Project acronym CausalStats
Project Statistics, Prediction and Causality for Large-Scale Data
Researcher (PI) Peter Lukas Bühlmann
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary Understanding cause-effect relationships between variables is of great interest in many fields of science. However, causal inference from data is much more ambitious and difficult than inferring (undirected) measures of association such as correlations, partial correlations or multivariate regression coefficients, mainly because of fundamental identifiability
problems. A main objective of the proposal is to exploit advantages from large-scale heterogeneous data for causal inference where heterogeneity arises from different experimental conditions or different unknown sub-populations. A key idea is to consider invariance or stability across different experimental conditions of certain conditional probability distributions: the invariants correspond on the one hand to (properly defined) causal variables which are of main interest in causality; andon the other hand, they correspond to the features for constructing powerful predictions for new scenarios which are unobserved in the data (new probability distributions). This opens novel perspectives: causal inference
can be phrased as a prediction problem of a certain kind, and vice versa, new prediction methods which work well across different scenarios (unobserved in the data) should be based on or regularized towards causal variables. Fundamental identifiability limits will become weaker with increased degree of heterogeneity, as we expect in large-scale data. The topic is essentially unexplored, yet it opens new avenues for causal inference, structural equation and graphical modeling, and robust prediction based on large-scale complex data. We will develop mathematical theory, statistical methodology and efficient algorithms; and we will also work and collaborate on major application problems such as inferring causal effects (i.e., total intervention effects) from gene knock-out or RNA interference perturbation experiments, genome-wide association studies and novel prediction tasks in economics.
Summary
Understanding cause-effect relationships between variables is of great interest in many fields of science. However, causal inference from data is much more ambitious and difficult than inferring (undirected) measures of association such as correlations, partial correlations or multivariate regression coefficients, mainly because of fundamental identifiability
problems. A main objective of the proposal is to exploit advantages from large-scale heterogeneous data for causal inference where heterogeneity arises from different experimental conditions or different unknown sub-populations. A key idea is to consider invariance or stability across different experimental conditions of certain conditional probability distributions: the invariants correspond on the one hand to (properly defined) causal variables which are of main interest in causality; andon the other hand, they correspond to the features for constructing powerful predictions for new scenarios which are unobserved in the data (new probability distributions). This opens novel perspectives: causal inference
can be phrased as a prediction problem of a certain kind, and vice versa, new prediction methods which work well across different scenarios (unobserved in the data) should be based on or regularized towards causal variables. Fundamental identifiability limits will become weaker with increased degree of heterogeneity, as we expect in large-scale data. The topic is essentially unexplored, yet it opens new avenues for causal inference, structural equation and graphical modeling, and robust prediction based on large-scale complex data. We will develop mathematical theory, statistical methodology and efficient algorithms; and we will also work and collaborate on major application problems such as inferring causal effects (i.e., total intervention effects) from gene knock-out or RNA interference perturbation experiments, genome-wide association studies and novel prediction tasks in economics.
Max ERC Funding
2 184 375 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym CHANGE
Project New CHallenges for (adaptive) PDE solvers: the interplay of ANalysis and GEometry
Researcher (PI) Annalisa BUFFA
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE1, ERC-2015-AdG
Summary The simulation of Partial Differential Equations (PDEs) is an indispensable tool for innovation in science and technology.
Computer-based simulation of PDEs approximates unknowns defined on a geometrical entity such as the computational domain with all of its properties. Mainly due to historical reasons, geometric design and numerical methods for PDEs have been developed independently, resulting in tools that rely on different representations of the same objects.
CHANGE aims at developing innovative mathematical tools for numerically solving PDEs and for geometric modeling and processing, the final goal being the definition of a common framework where geometrical entities and simulation are coherently integrated and where adaptive methods can be used to guarantee optimal use of computer resources, from the geometric description to the simulation.
We will concentrate on two classes of methods for the discretisation of PDEs that are having growing impact:
isogeometric methods and variational methods on polyhedral partitions. They are both extensions of standard finite elements enjoying exciting features, but both lack of an ad-hoc geometric modelling counterpart.
We will extend numerical methods to ensure robustness on the most general geometric models, and we will develop geometric tools to construct, manipulate and refine such models. Based on our tools, we will design an innovative adaptive framework, that jointly exploits multilevel representation of geometric entities and PDE unknowns.
Moreover, efficient algorithms call for efficient implementation: the issue of the optimisation of our algorithms on modern computer architecture will be addressed.
Our research (and the team involved in the project) will combine competencies in computer science, numerical analysis, high performance computing, and computational mechanics. Leveraging our innovative tools, we will also tackle challenging numerical problems deriving from bio-mechanical applications.
Summary
The simulation of Partial Differential Equations (PDEs) is an indispensable tool for innovation in science and technology.
Computer-based simulation of PDEs approximates unknowns defined on a geometrical entity such as the computational domain with all of its properties. Mainly due to historical reasons, geometric design and numerical methods for PDEs have been developed independently, resulting in tools that rely on different representations of the same objects.
CHANGE aims at developing innovative mathematical tools for numerically solving PDEs and for geometric modeling and processing, the final goal being the definition of a common framework where geometrical entities and simulation are coherently integrated and where adaptive methods can be used to guarantee optimal use of computer resources, from the geometric description to the simulation.
We will concentrate on two classes of methods for the discretisation of PDEs that are having growing impact:
isogeometric methods and variational methods on polyhedral partitions. They are both extensions of standard finite elements enjoying exciting features, but both lack of an ad-hoc geometric modelling counterpart.
We will extend numerical methods to ensure robustness on the most general geometric models, and we will develop geometric tools to construct, manipulate and refine such models. Based on our tools, we will design an innovative adaptive framework, that jointly exploits multilevel representation of geometric entities and PDE unknowns.
Moreover, efficient algorithms call for efficient implementation: the issue of the optimisation of our algorithms on modern computer architecture will be addressed.
Our research (and the team involved in the project) will combine competencies in computer science, numerical analysis, high performance computing, and computational mechanics. Leveraging our innovative tools, we will also tackle challenging numerical problems deriving from bio-mechanical applications.
Max ERC Funding
2 199 219 €
Duration
Start date: 2016-10-01, End date: 2021-09-30