Project acronym ALGILE
Project Foundations of Algebraic and Dynamic Data Management Systems
Researcher (PI) Christoph Koch
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE6, ERC-2011-StG_20101014
Summary "Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Summary
"Contemporary database query languages are ultimately founded on logic and feature an additive operation – usually a form of (multi)set union or disjunction – that is asymmetric in that additions or updates do not always have an inverse. This asymmetry puts a greater part of the machinery of abstract algebra for equation solving outside the reach of databases. However, such equation solving would be a key functionality that problems such as query equivalence testing and data integration could be reduced to: In the current scenario of the presence of an asymmetric additive operation they are undecidable. Moreover, query languages with a symmetric additive operation (i.e., which has an inverse and is thus based on ring theory) would open up databases for a large range of new scientific and mathematical applications.
The goal of the proposed project is to reinvent database management systems with a foundation in abstract algebra and specifically in ring theory. The presence of an additive inverse allows to cleanly define differences between queries. This gives rise to a database analog of differential calculus that leads to radically new incremental and adaptive query evaluation algorithms that substantially outperform the state of the art techniques. These algorithms enable a new class of systems which I call Dynamic Data Management Systems. Such systems can maintain continuously fresh query views at extremely high update rates and have important applications in interactive Large-scale Data Analysis. There is a natural connection between differences and updates, motivating the group theoretic study of updates that will lead to better ways of creating out-of-core data processing algorithms for new storage devices. Basing queries on ring theory leads to a new class of systems, Algebraic Data Management Systems, which herald a convergence of database systems and computer algebra systems."
Max ERC Funding
1 480 548 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym COSIWAX
Project Compound Specific Hydrogen Isotope Analyses of Leaf Wax n-Alkanes as a Novel Tool to Assess Plant and Ecosystem Water Relations Across new Spatial and Temporal Scales
Researcher (PI) Ansgar Kahmen
Host Institution (HI) UNIVERSITAT BASEL
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary "Leaf wax n-alkanes are long-chained lipids that are vital components of plant cuticles. What makes leaf wax n-alkanes unique is that their stable hydrogen isotope composition (δD) contains information on precipitation and plant water relations. In addition, leaf wax n-alkanes are abundant in leaves, soils, sediments and even the atmosphere and can persist with their δD values over millions of years. With this exceptional combination of properties, leaf wax n-alkanes and their δD values are now being celebrated as the much-needed ecohydrological proxy that provides information on the hydrological cycle and plant water relations across spatial and temporal scales that range from leaves to biomes and from weeks to millions of years. Despite the enormous potential that leaf wax n-alkanes have as ecohydrological proxy for a range of different research areas, the exact type of hydrological information that is recorded in the δD values of leaf wax n-alkanes remains still unclear. This is because critical mechanisms that determine the δD values of leaf wax n-alkanes are not understood. This proposal will perform the experimental work that is now needed to resolve the key mechanisms that determine the δD values leaf wax n-alkanes. These experiments will set the basis to develop a new numerical model that will allow to ultimately test what the exact hydrological signal is that leaf wax n-alkanes record in their δD values: a mere hydrological signal reflecting the amount or origin of precipitation or, a plant-shaped signal indicating plant water relations such as evapotranspiration. Building on this new model, COSIWAX will set out to test the potential that leaf wax n-alkane δD values hold as new ecohydrological proxy for ecology and ecosystem sciences. If successful, COSIWAX will establish with this research leaf wax n-alkanes δD values as a new and innovative ecohydrological proxy that has extensive possible applications in paleoclimatology, ecology, earth system sciences."
Summary
"Leaf wax n-alkanes are long-chained lipids that are vital components of plant cuticles. What makes leaf wax n-alkanes unique is that their stable hydrogen isotope composition (δD) contains information on precipitation and plant water relations. In addition, leaf wax n-alkanes are abundant in leaves, soils, sediments and even the atmosphere and can persist with their δD values over millions of years. With this exceptional combination of properties, leaf wax n-alkanes and their δD values are now being celebrated as the much-needed ecohydrological proxy that provides information on the hydrological cycle and plant water relations across spatial and temporal scales that range from leaves to biomes and from weeks to millions of years. Despite the enormous potential that leaf wax n-alkanes have as ecohydrological proxy for a range of different research areas, the exact type of hydrological information that is recorded in the δD values of leaf wax n-alkanes remains still unclear. This is because critical mechanisms that determine the δD values of leaf wax n-alkanes are not understood. This proposal will perform the experimental work that is now needed to resolve the key mechanisms that determine the δD values leaf wax n-alkanes. These experiments will set the basis to develop a new numerical model that will allow to ultimately test what the exact hydrological signal is that leaf wax n-alkanes record in their δD values: a mere hydrological signal reflecting the amount or origin of precipitation or, a plant-shaped signal indicating plant water relations such as evapotranspiration. Building on this new model, COSIWAX will set out to test the potential that leaf wax n-alkane δD values hold as new ecohydrological proxy for ecology and ecosystem sciences. If successful, COSIWAX will establish with this research leaf wax n-alkanes δD values as a new and innovative ecohydrological proxy that has extensive possible applications in paleoclimatology, ecology, earth system sciences."
Max ERC Funding
1 496 342 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym DIAMOND
Project Discovery and Insight with Advanced Models Of Nanoscale Dimensions
Researcher (PI) Joost Herman Bert Vandevondele
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary Generating knowledge about new materials and obtaining insight in their properties at the nanoscale level are highly relevant to the scientific objectives of the EU. Here, I propose to advance the current state of the art in atomistic modeling of complex systems. I aim at providing and establishing new tools that will allow for the description of large multi-component/multi-phase systems at experimental temperature and pressure with predictive power and controlled error. Generality and ease of use will be key. Building upon my experience, I have identified two clear needs that I will address. One need is a capable implementation, i.e. suitable for large condensed phase systems, of electronic structure theories that go beyond traditional DFT. Powerful linear scaling methods with excess accuracy are essential to validate, on the complex systems themselves, the use of DFT. The second need is an automatic approach for extracting empirical models from raw electronic structure data. Empirical methods are essential to perform simulations that are multiscale in time, space, and accuracy. This automatic approach must be able to generate models beyond the intuition and patience of an individual scientist using advanced optimization methods such as genetic algorithms or neural networks. Models must have a built-in estimate of their quality. The latter feature will allow for enhancing/correcting these empirical approaches automatically with first principles calculations whenever necessary. Massively parallel computing will be the enabling technology. In line with my track record, I will establish these new methods by demonstrating their potential through challenging applications. Example applications will be in diverse fields, including sustainable energy production, catalysis, environment and health. By making these tools freely and openly available to both academia and industry the benefit for the community as a whole will be significant.
Summary
Generating knowledge about new materials and obtaining insight in their properties at the nanoscale level are highly relevant to the scientific objectives of the EU. Here, I propose to advance the current state of the art in atomistic modeling of complex systems. I aim at providing and establishing new tools that will allow for the description of large multi-component/multi-phase systems at experimental temperature and pressure with predictive power and controlled error. Generality and ease of use will be key. Building upon my experience, I have identified two clear needs that I will address. One need is a capable implementation, i.e. suitable for large condensed phase systems, of electronic structure theories that go beyond traditional DFT. Powerful linear scaling methods with excess accuracy are essential to validate, on the complex systems themselves, the use of DFT. The second need is an automatic approach for extracting empirical models from raw electronic structure data. Empirical methods are essential to perform simulations that are multiscale in time, space, and accuracy. This automatic approach must be able to generate models beyond the intuition and patience of an individual scientist using advanced optimization methods such as genetic algorithms or neural networks. Models must have a built-in estimate of their quality. The latter feature will allow for enhancing/correcting these empirical approaches automatically with first principles calculations whenever necessary. Massively parallel computing will be the enabling technology. In line with my track record, I will establish these new methods by demonstrating their potential through challenging applications. Example applications will be in diverse fields, including sustainable energy production, catalysis, environment and health. By making these tools freely and openly available to both academia and industry the benefit for the community as a whole will be significant.
Max ERC Funding
1 728 576 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym DYNCORSYS
Project Real-time dynamics of correlated many-body systems
Researcher (PI) Philipp Werner
Host Institution (HI) UNIVERSITE DE FRIBOURG
Call Details Starting Grant (StG), PE3, ERC-2011-StG_20101014
Summary "Strongly correlated materials exhibit some of the most remarkable phenonomena found in condensed matter systems. They typically involve many active degrees of freedom (spin, charge, orbital), which leads to numerous competing states and complicated phase diagrams. A new perspective on correlated many-body systems is provided by the nonequilibrium dynamics, which is being explored in transport studies on nanostructures, pump-probe experiments on correlated solids, and in quench experiments on ultra-cold atomic gases.
An advanced theoretical framework for the study of correlated lattice models, which can be adapted to nonequilibrium situations, is dynamical mean field theory (DMFT). One aim of this proposal is to develop ""nonequilibrium DMFT"" into a powerful tool for the simulation of excitation and relaxation processes in interacting many-body systems. The big challenge in these simulations is the calculation of the real-time evolution of a quantum impurity model. Recently developed real-time impurity solvers have, however, opened the door to a wide range of applications. We will improve the efficiency and flexibility of these methods and develop complementary approaches, which will extend the accessible parameter regimes. This machinery will be used to study correlated lattice models under nonequilibrium conditions. The ultimate goal is to explore and qualitatively understand the nonequilibrium properties of ""real"" materials with active spin, charge, orbital and lattice degrees of freedom.
The ability to simulate the real-time dynamics of correlated many-body systems will be crucial for the interpretation of experiments and the discovery of correlation effects which manifest themselves only in the form of transient states. A proper understanding of the most basic nonequilibrium phenomena in correlated solids will help guide future experiments and hopefully lead to new technological applications such as ultra-fast switches or storage devices."
Summary
"Strongly correlated materials exhibit some of the most remarkable phenonomena found in condensed matter systems. They typically involve many active degrees of freedom (spin, charge, orbital), which leads to numerous competing states and complicated phase diagrams. A new perspective on correlated many-body systems is provided by the nonequilibrium dynamics, which is being explored in transport studies on nanostructures, pump-probe experiments on correlated solids, and in quench experiments on ultra-cold atomic gases.
An advanced theoretical framework for the study of correlated lattice models, which can be adapted to nonequilibrium situations, is dynamical mean field theory (DMFT). One aim of this proposal is to develop ""nonequilibrium DMFT"" into a powerful tool for the simulation of excitation and relaxation processes in interacting many-body systems. The big challenge in these simulations is the calculation of the real-time evolution of a quantum impurity model. Recently developed real-time impurity solvers have, however, opened the door to a wide range of applications. We will improve the efficiency and flexibility of these methods and develop complementary approaches, which will extend the accessible parameter regimes. This machinery will be used to study correlated lattice models under nonequilibrium conditions. The ultimate goal is to explore and qualitatively understand the nonequilibrium properties of ""real"" materials with active spin, charge, orbital and lattice degrees of freedom.
The ability to simulate the real-time dynamics of correlated many-body systems will be crucial for the interpretation of experiments and the discovery of correlation effects which manifest themselves only in the form of transient states. A proper understanding of the most basic nonequilibrium phenomena in correlated solids will help guide future experiments and hopefully lead to new technological applications such as ultra-fast switches or storage devices."
Max ERC Funding
1 493 178 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym EARLYEARTH
Project Accretion and Differentiation of Terrestrial Planets
Researcher (PI) Maria Schoenbaechler
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary This proposal aims to constrain the late accretion history of the Earth and the differentiation of the earliest silicate reservoirs in planets. Highly siderophile elements (HSE) constrain the late accretion of material onto the Earth; a process that potentially delivered water to Earth. During core formation, HSE strongly partition into metal. Once core formation ceases, newly accreted HSE-rich material will significantly contribute to the HSE budget of the Earth’s mantle. The HSE are more abundant in the Earth’s mantle than predicted from low temperature partitioning experiments and feature nearly chondritic relative abundances. This implies a significant late accretion of chondritic material (“the late veneer”). This idea is challenged by high pressure/temperature experiments indicating that the HSE were left in the behind in the mantle during core formation, thereby calling into question the late veneer. To address this issue, I propose the setup of new isotopic tracers and utilize (i) nucleosynthetic anomalies and (ii) stable isotope systematics of the HSE to determine the origin of HSE in the Earth’s mantle. Unravelling this issue is a major advance in understanding planetary accretion. Formation of the earliest silicate reservoirs probably occurred contemporary to late accretion. Global differentiation in terrestrial silicate reservoirs may have taken place within the first 30 million years of the Earth’s formation based on Sm-Nd isotope data. This timing has been debated on various grounds. The 92Nb-92Zr decay system is a potentially powerful chronometer to further constrain this issue. Its usefulness, however, has been hindered by uncertainties of the initial 92Nb abundance in the solar system. I propose to obtain unequivocal evidence from old differentiated meteorites to settle this debate. The results will have implications for understanding early silicate differentiation on asteroids and - depending on the initial 92Nb abundance - the Earth and Mars.
Summary
This proposal aims to constrain the late accretion history of the Earth and the differentiation of the earliest silicate reservoirs in planets. Highly siderophile elements (HSE) constrain the late accretion of material onto the Earth; a process that potentially delivered water to Earth. During core formation, HSE strongly partition into metal. Once core formation ceases, newly accreted HSE-rich material will significantly contribute to the HSE budget of the Earth’s mantle. The HSE are more abundant in the Earth’s mantle than predicted from low temperature partitioning experiments and feature nearly chondritic relative abundances. This implies a significant late accretion of chondritic material (“the late veneer”). This idea is challenged by high pressure/temperature experiments indicating that the HSE were left in the behind in the mantle during core formation, thereby calling into question the late veneer. To address this issue, I propose the setup of new isotopic tracers and utilize (i) nucleosynthetic anomalies and (ii) stable isotope systematics of the HSE to determine the origin of HSE in the Earth’s mantle. Unravelling this issue is a major advance in understanding planetary accretion. Formation of the earliest silicate reservoirs probably occurred contemporary to late accretion. Global differentiation in terrestrial silicate reservoirs may have taken place within the first 30 million years of the Earth’s formation based on Sm-Nd isotope data. This timing has been debated on various grounds. The 92Nb-92Zr decay system is a potentially powerful chronometer to further constrain this issue. Its usefulness, however, has been hindered by uncertainties of the initial 92Nb abundance in the solar system. I propose to obtain unequivocal evidence from old differentiated meteorites to settle this debate. The results will have implications for understanding early silicate differentiation on asteroids and - depending on the initial 92Nb abundance - the Earth and Mars.
Max ERC Funding
1 994 545 €
Duration
Start date: 2012-04-01, End date: 2017-12-31
Project acronym FLATRONICS
Project Electronic devices based on nanolayers
Researcher (PI) Andras Kis
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Summary
The main objective of this research proposal is to explore the electrical properties of nanoscale devices and circuits based on nanolayers. Nanolayers cover a wide span of possible electronic properties, ranging from semiconducting to superconducting. The possibility to form electrical circuits by varying their geometry offers rich research and practical opportunities. Together with graphene, nanolayers could form the material library for future nanoelectronics where different materials could be mixed and matched to different functionalities.
Max ERC Funding
1 799 996 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym FUNCTIONALDYNA
Project Investigating Functional Dynamics in Proteins by Novel Multidimensional Optical Spectroscopies in the Ultraviolet
Researcher (PI) Andrea Cannizzo
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary Proteins perform their biological function following specific sequences of events. During these dynamical paths, highly non-trivial cooperative interactions occur. Ultimately, this is the origin of the emerging collective behavior that makes proteins the most sophisticated existing molecular machines. This complex network of processes covers a wide range of timescales, from few fs to ms, and distances, from atoms to large protein domains.
Even the most recent experimental techniques generally provide ns-to-us averaged structural and dynamical information, often in non-physiological conditions. To access simultaneously atomic time and length scales would unveil the elementary conformational steps constituting a functional event and their temporal evolution.
I propose to extend emerging multidimensional ultrafast optical spectroscopic techniques to the deep ultraviolet. These techniques are the analogue of multidimensional Nuclear Magnetic Resonance methods and are able to provide structural information exploiting electric dipole couplings but with fs temporal resolution. The novel extension to ultraviolet, that I shall implement, will open the possibility to exploit the optical absorption of aromatic amino-acid residues with the great advantage of studying wild type proteins. In this way, all drawbacks due to artificial labeling will be ruled out. I will use this new technique to study dynamic-assisted long range electron transfer in copper proteins and enzyme regulation in hemoglobin. These two proteins of great importance from a biological point of view have been chosen because their functions are a clear manifestation of cooperative phenomena. On a long term prospective this methodology will be a universal tool applicable to any wild type protein containing aromatic amino acids.
Summary
Proteins perform their biological function following specific sequences of events. During these dynamical paths, highly non-trivial cooperative interactions occur. Ultimately, this is the origin of the emerging collective behavior that makes proteins the most sophisticated existing molecular machines. This complex network of processes covers a wide range of timescales, from few fs to ms, and distances, from atoms to large protein domains.
Even the most recent experimental techniques generally provide ns-to-us averaged structural and dynamical information, often in non-physiological conditions. To access simultaneously atomic time and length scales would unveil the elementary conformational steps constituting a functional event and their temporal evolution.
I propose to extend emerging multidimensional ultrafast optical spectroscopic techniques to the deep ultraviolet. These techniques are the analogue of multidimensional Nuclear Magnetic Resonance methods and are able to provide structural information exploiting electric dipole couplings but with fs temporal resolution. The novel extension to ultraviolet, that I shall implement, will open the possibility to exploit the optical absorption of aromatic amino-acid residues with the great advantage of studying wild type proteins. In this way, all drawbacks due to artificial labeling will be ruled out. I will use this new technique to study dynamic-assisted long range electron transfer in copper proteins and enzyme regulation in hemoglobin. These two proteins of great importance from a biological point of view have been chosen because their functions are a clear manifestation of cooperative phenomena. On a long term prospective this methodology will be a universal tool applicable to any wild type protein containing aromatic amino acids.
Max ERC Funding
1 473 600 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym Future Proof
Project Theoretical and Algorithmic Foundations for Future Proof Information and Inference Systems
Researcher (PI) Volkan Cevher
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE7, ERC-2011-StG_20101014
Summary A critical technological challenge for emerging information systems is to acquire, analyze and learn from the ever-increasing high-dimensional data produced by natural and man-made phenomena. Sampling, streaming, and recoding of even the most basic applications now produce a data deluge that severely stresses the available analog-to-digital converter, digital communication and storage resources, and easily swamps the back-end processing and learning systems.
Surprisingly, while the ambient data dimension is large in many problems, the relevant information therein typically resides in a much lower dimensional space. Viewed combinatorially and geometrically, natural constraints often cause data to cluster along low-dimensional structures, such as unions-of-subspaces or manifolds, having a few degrees of freedom relative to their size. This powerful notion suggests the potential for developing highly efficient methods for processing and learning by capturing and exploiting the inherent model, or data’s “information level.”
To this end, we seek to revolutionize scientific and practical modi operandi of data acquisition and learning by developing a new optimization and analysis framework based on the nascent low-dimensional models with broad applications—from inverse problems to analog-to-information conversion, and from automated representation learning to statistical regression. We attack the curse of dimensionality in specific ways, not only by relying on the blessing of dimensionality via concentration-of-measures, but also by exploiting geometric topologies and the diminishing returns (i.e., submodularity) within learning objectives. We believe only an approach such as ours can provide the theoretical scaffold for a future proof processing and learning framework that scales its operation to the problem’s information level, promising substantial reductions in hardware complexity, communication, storage, and computational resources.
Summary
A critical technological challenge for emerging information systems is to acquire, analyze and learn from the ever-increasing high-dimensional data produced by natural and man-made phenomena. Sampling, streaming, and recoding of even the most basic applications now produce a data deluge that severely stresses the available analog-to-digital converter, digital communication and storage resources, and easily swamps the back-end processing and learning systems.
Surprisingly, while the ambient data dimension is large in many problems, the relevant information therein typically resides in a much lower dimensional space. Viewed combinatorially and geometrically, natural constraints often cause data to cluster along low-dimensional structures, such as unions-of-subspaces or manifolds, having a few degrees of freedom relative to their size. This powerful notion suggests the potential for developing highly efficient methods for processing and learning by capturing and exploiting the inherent model, or data’s “information level.”
To this end, we seek to revolutionize scientific and practical modi operandi of data acquisition and learning by developing a new optimization and analysis framework based on the nascent low-dimensional models with broad applications—from inverse problems to analog-to-information conversion, and from automated representation learning to statistical regression. We attack the curse of dimensionality in specific ways, not only by relying on the blessing of dimensionality via concentration-of-measures, but also by exploiting geometric topologies and the diminishing returns (i.e., submodularity) within learning objectives. We believe only an approach such as ours can provide the theoretical scaffold for a future proof processing and learning framework that scales its operation to the problem’s information level, promising substantial reductions in hardware complexity, communication, storage, and computational resources.
Max ERC Funding
1 824 220 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym HYBRIDQED
Project Hybrid Cavity Quantum Electrodynamics with Atoms and Circuits
Researcher (PI) Andreas Joachim Wallraff
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Summary
We plan to investigate the strong coherent interaction of light and matter on the level of individual photons and atoms or atom-like systems. In particular, we will explore large dipole moment superconducting artificial atoms and natural Rydberg atoms interacting with radiation fields contained in quasi-one-dimensional on-chip microwave frequency resonators. In these resonators photons generate field strengths that exceed those in conventional mirror based resonators by orders of magnitude and they can also be stored for long times. This allows us to reach the strong coupling limit of cavity quantum electrodynamics (QED) using superconducting circuits, an approach known as circuit QED. In this project we will explore novel approaches to perform quantum optics experiments in circuits. We will develop techniques to generate and detect non-classical radiation fields using nonlinear resonators and chip-based interferometers. We will also further advance the circuit QED approach to quantum information processing. Our main goal is to develop an interface between circuit and atom based realizations of cavity QED. In particular, we will couple Rydberg atoms to on-chip resonators. To achieve this goal we will first investigate the interaction of ensembles of atoms in a beam with the coherent fields in a transmission line or a resonator. We will perform spectroscopy and we will investigate on-chip dispersive detection schemes for Rydberg atoms. We will also explore the interaction of Rydberg atoms with chip surfaces in dependence on materials, temperature and geometry. Experiments will be performed from 300 K down to millikelvin temperatures. We will realize and characterize on-chip traps for Rydberg atoms. Using trapped atoms we will explore their coherent dynamics. Finally, we aim at investigating the single atom and single photon limit. When realized, this system will be used to explore the first quantum coherent interface between atomic and solid state qubits.
Max ERC Funding
1 954 464 €
Duration
Start date: 2009-09-01, End date: 2014-08-31
Project acronym LABCHIP_MULTIPLEX
Project Simultaneous Detection of Multiple DNA and Protein Targets on Paramagnetic Beads Packed in Microfluidic Channels using Quantum Dots as Tracers
Researcher (PI) Martin Pumera
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE4, ERC-2009-StG
Summary The detection of DNA hybridization and protein recoginittion event (immunoassay) is very important for the diagnosis and treatment of genetic diseases, for the detection infectious agents and for reliable forensic analysis. Recent activity has focused on the development of hybridization assays that permit simultaneous determination of multiple DNA or protein targets, using optical or electrochemical coding technology, based on unique encoding properties of semiconductor crystal nanoparticle tags (quantum dots). Described multi-target bio assays were performed in batch mode, involving significant amount of steps, connected with the possibility of human error, time and reagents consuming. Lab-on-a-chip technology offers tremendous potential for obtaining desired analytical information in a simpler, faster and cheaper way compared to traditional batch/laboratory-based technology. Particularly attractive for multiple DNA and protein recognition applications (i.e. point-of-care) is the high-throughput, automation, versatility, portability, reagent/sample economy and high-performance of such micromachined devices. Overall objective of the proposed research is to create and characterize a portable microanalyzer, based on a novel advanced Lab-on-a-Chip technology with magnetic separation and end-column quantum dots tracers voltammetric detection of multiple DNA and protein targets for point-of-care , automated, high-throughput, sensitive, selective and simultaneous assays. The new micro-total analytical system will rely on coupling of microfluidic transport of samples, effective flow-through magnetic separation complementary/non-complementary DNA and protein targets and a novel chip-based voltammetric stripping detection of quantum dot tags. To successfully complete such advanced micro-total analytical system, several fundamental and practical issues will be addressed.
Summary
The detection of DNA hybridization and protein recoginittion event (immunoassay) is very important for the diagnosis and treatment of genetic diseases, for the detection infectious agents and for reliable forensic analysis. Recent activity has focused on the development of hybridization assays that permit simultaneous determination of multiple DNA or protein targets, using optical or electrochemical coding technology, based on unique encoding properties of semiconductor crystal nanoparticle tags (quantum dots). Described multi-target bio assays were performed in batch mode, involving significant amount of steps, connected with the possibility of human error, time and reagents consuming. Lab-on-a-chip technology offers tremendous potential for obtaining desired analytical information in a simpler, faster and cheaper way compared to traditional batch/laboratory-based technology. Particularly attractive for multiple DNA and protein recognition applications (i.e. point-of-care) is the high-throughput, automation, versatility, portability, reagent/sample economy and high-performance of such micromachined devices. Overall objective of the proposed research is to create and characterize a portable microanalyzer, based on a novel advanced Lab-on-a-Chip technology with magnetic separation and end-column quantum dots tracers voltammetric detection of multiple DNA and protein targets for point-of-care , automated, high-throughput, sensitive, selective and simultaneous assays. The new micro-total analytical system will rely on coupling of microfluidic transport of samples, effective flow-through magnetic separation complementary/non-complementary DNA and protein targets and a novel chip-based voltammetric stripping detection of quantum dot tags. To successfully complete such advanced micro-total analytical system, several fundamental and practical issues will be addressed.
Max ERC Funding
1 400 000 €
Duration
Start date: 2010-04-01, End date: 2015-03-31