Project acronym BlackHoleMaps
Project Mapping gravitational waves from collisions of black holes
Researcher (PI) Mark Douglas Hannam
Host Institution (HI) CARDIFF UNIVERSITY
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Summary
Breakthroughs in numerical relativity in 2005 gave us unprecedented access to the strong-field regime of general relativity, making possible solutions of the full nonlinear Einstein equations for the merger of two black holes. Numerical relativity is also crucial to study fundamental physics with gravitational-wave (GW) observations: numerical solutions allow us to construct models that will be essential to extract physical information from observations in data from Advanced LIGO and Virgo, which will operate from late 2015. Complete signal models will allow us to follow up our first theoretical predictions of the nature of black-hole mergers with their first observational measurements.
The goal of this project is to advance numerical-relativity methods, deepen our understanding of black-hole mergers, and map the parameter space of binary configurations with the most comprehensive and systematic set of numerical calculations performed to date, in order to produce a complete GW signal model. Central to this problem is the purely general-relativistic effect of orbital precession. The inclusion of precession in waveform models is the most challenging and urgent theoretical problem in the build-up to GW astronomy. Simulations must cover a seven-dimensional parameter space of binary configurations, but their computational cost makes a naive covering unfeasible. This project capitalizes on a breakthrough preliminary model produced by my team in 2013, with the pragmatic goal of focussing on the physics that will be measurable with GW detectors over the next five years.
My team at Cardiff is uniquely placed to tackle this problem. Since 2005 I have been at the forefront of black-hole simulations and waveform modelling, and the Cardiff group is a world leader in analysis of GW detector data. This project will consolidate my team to make breakthroughs in strong-field gravity, astrophysics, fundamental physics and cosmology using GW observations.
Max ERC Funding
1 998 009 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym DARKHORIZONS
Project Dark Matter and the Early Universe in the LHC Era
Researcher (PI) Malcolm Douglas Stephen Fairbairn
Host Institution (HI) KING'S COLLEGE LONDON
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary The discovery of a Higgs like particle in its first science run shows that we are truly in the LHC era and when collisions resume we will learn more about the physics of the TeV scale.
There are two main areas at the interface of particle physics and cosmology that the LHC will shed light on - If dark matter is a thermal relic then we naturally expect new particle physics close to this TeV energy range. The LHC will also help us learn about the nature of the electroweak sector and its behaviour during the early Universe.
In this proposal we present a body of work which will combine information from the LHC with dark matter experiments and astronomical observations to understand both the nature of dark matter and the role of the Higgs sector in the first moments after the big bang.
We will investigate dark matter by developing a new categorisation of interactions between the dark sector and the standard model. This will enable us to perform detailed collider and direct detection phenomenology in a more comprehensive way than current approaches while avoiding the problems which occur when those methods breakdown. Different schemes for mitigating against the upcoming problem of the neutrino floor in direct detection experiments will also be investigated.
Many of the keys to understanding the particle nature of dark matter lie in astrophysics, and we will develop new techniques to understand the distribution of dark matter in the Universe, its behaviour and density in distant galaxies and its velocity dispersion in the Solar system, critical to predict event rates in detectors.
We will use LHC and CMB data to answer important questions - Can the electroweak phase transition be first order? What is the role of the Higgs field during inflation? Can we use the electroweak sector to infer information about physics at high energy scale or the nature of inflation?
The interdisciplinary experience of the PI will ensure the ambitious project is a success.
Summary
The discovery of a Higgs like particle in its first science run shows that we are truly in the LHC era and when collisions resume we will learn more about the physics of the TeV scale.
There are two main areas at the interface of particle physics and cosmology that the LHC will shed light on - If dark matter is a thermal relic then we naturally expect new particle physics close to this TeV energy range. The LHC will also help us learn about the nature of the electroweak sector and its behaviour during the early Universe.
In this proposal we present a body of work which will combine information from the LHC with dark matter experiments and astronomical observations to understand both the nature of dark matter and the role of the Higgs sector in the first moments after the big bang.
We will investigate dark matter by developing a new categorisation of interactions between the dark sector and the standard model. This will enable us to perform detailed collider and direct detection phenomenology in a more comprehensive way than current approaches while avoiding the problems which occur when those methods breakdown. Different schemes for mitigating against the upcoming problem of the neutrino floor in direct detection experiments will also be investigated.
Many of the keys to understanding the particle nature of dark matter lie in astrophysics, and we will develop new techniques to understand the distribution of dark matter in the Universe, its behaviour and density in distant galaxies and its velocity dispersion in the Solar system, critical to predict event rates in detectors.
We will use LHC and CMB data to answer important questions - Can the electroweak phase transition be first order? What is the role of the Higgs field during inflation? Can we use the electroweak sector to infer information about physics at high energy scale or the nature of inflation?
The interdisciplinary experience of the PI will ensure the ambitious project is a success.
Max ERC Funding
1 947 665 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym dynamicmodifications
Project Complexity and dynamics of nucleic acids modifications in vivo
Researcher (PI) Petra Hajkova
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary Development of any organism starts with a totipotent cell (zygote). Through series of cell divisions and differentiation processes this cell will eventually give rise to the whole organism containing hundreds of specialised cell. While the cells at the onset of development have the capacity to generate all cell types (ie are toti-or pluripotent), this developmental capacity is progressively lost as the cells undertake cell fate decisions. At the molecular level, the memory of these events is laid down in a complex layer of epigenetic modifications at both the DNA and the chromatin level. Unidirectional character of the developmental progress dictates that the key acquired epigenetic modifications are stable and inherited through subsequent cell divisions. This paradigm is, however, challenged during cellular reprogramming that requires de-differentiation (nuclear transfer, induced pluripotent stem cells, wound healing and regeneration in lower organisms) or a change in cell fate (transdifferentiation). Despite intense efforts of numerous research teams, the molecular mechanisms of these processes remain enigmatic.
In order to understand cellular reprogramming at the molecular level, this proposal takes advantage of epigenetic reprogramming processes that occur naturally during mouse development. By using mouse fertilised zygote and mouse developing primordial germ cells we will investigate novel molecular components implicated in the genome-wide erasure of DNA methylation. Additionally, by using a unique combination of the developmental models with the state of the art ultra-sensitive LC/MS and genomics approaches we propose to investigate the dynamics and the interplay between DNA and RNA modifications during these key periods of embryonic development characterised by genome-wide epigenetic changes . Our work will thus provide new fundamental insights into a complex dynamics and interactions between epigenetic modifications that underlie epigenetic reprogramming
Summary
Development of any organism starts with a totipotent cell (zygote). Through series of cell divisions and differentiation processes this cell will eventually give rise to the whole organism containing hundreds of specialised cell. While the cells at the onset of development have the capacity to generate all cell types (ie are toti-or pluripotent), this developmental capacity is progressively lost as the cells undertake cell fate decisions. At the molecular level, the memory of these events is laid down in a complex layer of epigenetic modifications at both the DNA and the chromatin level. Unidirectional character of the developmental progress dictates that the key acquired epigenetic modifications are stable and inherited through subsequent cell divisions. This paradigm is, however, challenged during cellular reprogramming that requires de-differentiation (nuclear transfer, induced pluripotent stem cells, wound healing and regeneration in lower organisms) or a change in cell fate (transdifferentiation). Despite intense efforts of numerous research teams, the molecular mechanisms of these processes remain enigmatic.
In order to understand cellular reprogramming at the molecular level, this proposal takes advantage of epigenetic reprogramming processes that occur naturally during mouse development. By using mouse fertilised zygote and mouse developing primordial germ cells we will investigate novel molecular components implicated in the genome-wide erasure of DNA methylation. Additionally, by using a unique combination of the developmental models with the state of the art ultra-sensitive LC/MS and genomics approaches we propose to investigate the dynamics and the interplay between DNA and RNA modifications during these key periods of embryonic development characterised by genome-wide epigenetic changes . Our work will thus provide new fundamental insights into a complex dynamics and interactions between epigenetic modifications that underlie epigenetic reprogramming
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym Enhancer ID
Project Identification and functional characterization of mammalian enhancers and transcriptional co-factors during cellular signaling and cell fate transitions
Researcher (PI) Alexander Stark
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary A major goal in biology is to understand how gene regulatory information is encoded by the human genome and how it defines different gene expression programs and cell types. Enhancers are genomic elements that control transcription, yet despite their importance, only a minority of enhancers are known and functionally characterized. In particular, their activity changes during cellular signalling or cell type transitions are largely elusive. Furthermore, fundamental questions about transcriptional co-factors have remained unanswered even though they regulate enhancer activities and have become attractive therapeutic targets, e.g. for cancer treatment.
Here, I propose a functional genomics approach in mammalian cells with three specific objectives: First, we will identify and functionally characterize transcriptional enhancers in selected human and mouse cells using the recently developed quantitative enhancer activity assay STARR-seq. Second, we will determine enhancer activity changes quantitatively during steroid hormone signalling, cell differentiation, and malignant transformation to reveal enhancers that are important for these processes. Third, we will systematically dissect the functional relationship of enhancers and transcriptional co-factors.
This proposal uses emerging in-house technology to address fundamental questions in enhancer biology and complement the genome-wide profiling of gene expression and chromatin states (e.g. by ENCODE). We will gain insights into the genomic organization of active enhancers and reveal chromatin or sequence features associated with dynamic activity changes. I also expect that we will be able to define co-factor requirements for enhancer function and reveal if different types of enhancers exist. Given our expertise in experimental and computational approaches and STARR-seq, I anticipate that we reach our aims and make major contributions to the understanding of gene regulation in mammals.
Summary
A major goal in biology is to understand how gene regulatory information is encoded by the human genome and how it defines different gene expression programs and cell types. Enhancers are genomic elements that control transcription, yet despite their importance, only a minority of enhancers are known and functionally characterized. In particular, their activity changes during cellular signalling or cell type transitions are largely elusive. Furthermore, fundamental questions about transcriptional co-factors have remained unanswered even though they regulate enhancer activities and have become attractive therapeutic targets, e.g. for cancer treatment.
Here, I propose a functional genomics approach in mammalian cells with three specific objectives: First, we will identify and functionally characterize transcriptional enhancers in selected human and mouse cells using the recently developed quantitative enhancer activity assay STARR-seq. Second, we will determine enhancer activity changes quantitatively during steroid hormone signalling, cell differentiation, and malignant transformation to reveal enhancers that are important for these processes. Third, we will systematically dissect the functional relationship of enhancers and transcriptional co-factors.
This proposal uses emerging in-house technology to address fundamental questions in enhancer biology and complement the genome-wide profiling of gene expression and chromatin states (e.g. by ENCODE). We will gain insights into the genomic organization of active enhancers and reveal chromatin or sequence features associated with dynamic activity changes. I also expect that we will be able to define co-factor requirements for enhancer function and reveal if different types of enhancers exist. Given our expertise in experimental and computational approaches and STARR-seq, I anticipate that we reach our aims and make major contributions to the understanding of gene regulation in mammals.
Max ERC Funding
1 999 906 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ER_disease
Project Defining hormonal cross-talk and the role of mutations in estrogen receptor positive breast cancer
Researcher (PI) Jason Scott Carroll
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Consolidator Grant (CoG), LS4, ERC-2014-CoG
Summary Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Summary
Estrogen Receptor (ER) is the driving transcription factor in ~75% of all breast cancers. ER antagonists are routinely used for treatment, but significant variability exists in clinical response. We are interested in explaining this heterogeneity and exploiting the mechanistic insight. We have recently identified important, but previously uncharacterised cross-talk between ER and the progesterone receptor (PR) and androgen receptor (AR) pathways, both of which are commonly expressed in ER+ tumours. Recently, ER has been shown to be mutated in ~18-55% of metastatic breast cancers. In addition, two key ER-chromatin regulatory proteins, FoxA1 and GATA3, are mutated in primary ER+ disease. Finally we have discovered three previously unknown phosphorylation events on FoxA1.
Aim 1: We will comprehensively explore the cross-talk that exists between ER and PR and AR pathways to determine the physiological effects on ER function. Aim 2: We will recapitulate the key mutations observed in ER, FoxA1 and GATA3, to assess the impact on ER-DNA interactions, ER transcriptional activity and cell growth and drug response. This will be explored under different hormonal contexts to identify how the mutational spectrum influences the cross-talk between ER and the parallel PR and AR pathways. Aim 3: We will identify upstream kinase pathways that influence FoxA1 and GATA3 function. Aim 4: We will establish a novel single locus chromatin purification method for isolation of specific chromatin loci, followed by Mass Spectrometry to characterise the potential role of PR and AR variants and to identify unknown regulatory factors.
Given recent biological discoveries and technological advances, we are perfectly positioned to apply cutting-edge tools to glean mechanistic insight into the factors that determine variability within ER+ disease. This proposal aims to advance our understanding of ER+ tumour heterogeneity, revealing ways of exploiting this in a clinically meaningful manner.
Max ERC Funding
1 987 274 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym FNPMLS
Project Fundamental nuclear properties measured with laser spectroscopy
Researcher (PI) Kieran Thomas Joseph Flanagan
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary The prime research theme of this project is the study of short-lived exotic nuclei with laser spectroscopy. Over the next 5 years my team will study the role of three-nucleon forces and their associated influence on nuclear structure and the limits of nuclear existence. This work will investigate the interplay between tensor and central forces and the associated effect on quantum shells in exotic nuclear systems. This proposal will study how the shape of the nucleus is modified at the limits of nuclear existence. We will use innovative laser spectroscopy methods to achieve these goals. The project will be carried out at the ISOLDE facility, CERN, which is the premier radioactive beam facility at the precision frontier. The proposed research activity closely matches the NuPECC (Nuclear Physics European Collaboration Committee) 2010 Long Range Plan. The wider scientific impact of this research will influence modelling explosive stellar processes and nuclear synthesis, understanding the structure of astrophysical compact-objects such as neutron stars and predicting regions of enhanced stability in the super heavy elements. The FNPMLS project will develop ultra-sensitive methodologies that set a new paradigm in laser spectroscopy. It builds on the cutting edge technology of collinear resonance ionization spectroscopy (CRIS) that I have developed during my STFC Advanced Fellowship. The CRIS technique combines the high resolution nature of collinear laser spectroscopy with the high sensitivity of resonance ionization spectroscopy. The research programme and investment outlined in this proposal will place my team in a unique and world leading position. This work will happen in advance of the next generation of radioactive beam facility such as SPIRAL2, FAIR and FRIB and will provide the essential ingredients for future fundamental questions.
Summary
The prime research theme of this project is the study of short-lived exotic nuclei with laser spectroscopy. Over the next 5 years my team will study the role of three-nucleon forces and their associated influence on nuclear structure and the limits of nuclear existence. This work will investigate the interplay between tensor and central forces and the associated effect on quantum shells in exotic nuclear systems. This proposal will study how the shape of the nucleus is modified at the limits of nuclear existence. We will use innovative laser spectroscopy methods to achieve these goals. The project will be carried out at the ISOLDE facility, CERN, which is the premier radioactive beam facility at the precision frontier. The proposed research activity closely matches the NuPECC (Nuclear Physics European Collaboration Committee) 2010 Long Range Plan. The wider scientific impact of this research will influence modelling explosive stellar processes and nuclear synthesis, understanding the structure of astrophysical compact-objects such as neutron stars and predicting regions of enhanced stability in the super heavy elements. The FNPMLS project will develop ultra-sensitive methodologies that set a new paradigm in laser spectroscopy. It builds on the cutting edge technology of collinear resonance ionization spectroscopy (CRIS) that I have developed during my STFC Advanced Fellowship. The CRIS technique combines the high resolution nature of collinear laser spectroscopy with the high sensitivity of resonance ionization spectroscopy. The research programme and investment outlined in this proposal will place my team in a unique and world leading position. This work will happen in advance of the next generation of radioactive beam facility such as SPIRAL2, FAIR and FRIB and will provide the essential ingredients for future fundamental questions.
Max ERC Funding
1 846 542 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym GQCOP
Project Genuine Quantumness in Cooperative Phenomena
Researcher (PI) Gerardo Adesso
Host Institution (HI) THE UNIVERSITY OF NOTTINGHAM
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary The proposed research programme addresses issues of fundamental and technological importance in quantum information science and its interplay with complexity. The main aim of this project is to provide a new paradigmatic foundation for the characterisation of quantumness in cooperative phenomena and to develop novel platforms for its practical utilisation in quantum technology applications.
To reach its main goal, this programme will target five specific objectives:
O1. Constructing a quantitative theory of quantumness in composite systems;
O2. Benchmarking genuine quantumness in information and communication protocols;
O3. Devising practical solutions for quantum-enhanced metrology in noisy conditions;
O4. Developing quantum thermal engineering for refrigerators and heat engines;
O5. Establishing a cybernetics framework for regulative phenomena in the quantum domain.
This project is deeply driven by the scientific curiosity to explore the ultimate range of applicability of quantum mechanics. Along the route to satisfying such curiosity, this project will fulfill a crucial two-fold mission. On the fundamental side, it will lead to a radically new level of understanding of quantumness, in its various manifestations, and the functional role it plays for natural and artificial complex systems traditionally confined to a classical domain of investigation. On the practical side, it will deliver novel concrete recipes for communication, sensing and cooling technologies in realistic conditions, rigorously assessing in which ways and to which extent these can be enhanced by engineering and harnessing quantumness.
Along with a skillful team which this grant will allow to assemble, benefitting from the vivid research environment at Nottingham, and mainly thanks to his creativity, broad mathematical and physical preparation and relevant inter-disciplinary expertise, the applicant is in a unique position to accomplish this timely and ambitious mission.
Summary
The proposed research programme addresses issues of fundamental and technological importance in quantum information science and its interplay with complexity. The main aim of this project is to provide a new paradigmatic foundation for the characterisation of quantumness in cooperative phenomena and to develop novel platforms for its practical utilisation in quantum technology applications.
To reach its main goal, this programme will target five specific objectives:
O1. Constructing a quantitative theory of quantumness in composite systems;
O2. Benchmarking genuine quantumness in information and communication protocols;
O3. Devising practical solutions for quantum-enhanced metrology in noisy conditions;
O4. Developing quantum thermal engineering for refrigerators and heat engines;
O5. Establishing a cybernetics framework for regulative phenomena in the quantum domain.
This project is deeply driven by the scientific curiosity to explore the ultimate range of applicability of quantum mechanics. Along the route to satisfying such curiosity, this project will fulfill a crucial two-fold mission. On the fundamental side, it will lead to a radically new level of understanding of quantumness, in its various manifestations, and the functional role it plays for natural and artificial complex systems traditionally confined to a classical domain of investigation. On the practical side, it will deliver novel concrete recipes for communication, sensing and cooling technologies in realistic conditions, rigorously assessing in which ways and to which extent these can be enhanced by engineering and harnessing quantumness.
Along with a skillful team which this grant will allow to assemble, benefitting from the vivid research environment at Nottingham, and mainly thanks to his creativity, broad mathematical and physical preparation and relevant inter-disciplinary expertise, the applicant is in a unique position to accomplish this timely and ambitious mission.
Max ERC Funding
1 351 461 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym IQFT
Project Integrable Structures in Quantum Field Theory
Researcher (PI) James Matthew Drummond
Host Institution (HI) UNIVERSITY OF SOUTHAMPTON
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Quantum field theory forms the foundation of our understanding of elementary particle physics. It provides the theoretical background for the interpretation of data from collider experiments. While quantum field theory is an old subject, over the last decade new features have begun to emerge which reveal new ways to understand it. In particular an astonishing simplicity has been found at the heart of the maximally supersymmetric gauge theory in four spacetime dimensions, a close cousin of Quantum Chromodynamics (QCD), which describes the strong interactions.
My research team will use the new methods I have been developing to construct explicit results for scattering amplitudes and correlation functions. We will develop these results into general statements about the analytic behaviour of scattering amplitudes. The approach will be based on my recent work on new dualities between amplitudes and Wilson loops and on new symmetries revealing an underlying integrable structure. This research will allow us to answer key foundational questions such as the origin of Regge behaviour of scattering amplitudes in the high energy limit, and the connection to string theory in the limit of strong coupling. We will also pursue the connection to quantum groups and formulate the problem of scattering amplitudes in this language. This provide a solid mathematical underpinning to the formulation of the scattering problem in quantum field theories and allow application of techniques from the field of integrable systems to gauge theories.
An enormous effort goes into performing the calculations of scattering amplitudes needed to make precise predictions for collider experiments. New techniques to handle such calculations are much needed. We will develop new tools, such as the application of differential equation methods for loop integrals and analytic bootstrap methods for amplitudes. This research will allow us to greatly improve on existing efforts to calculate processes in QCD.
Summary
Quantum field theory forms the foundation of our understanding of elementary particle physics. It provides the theoretical background for the interpretation of data from collider experiments. While quantum field theory is an old subject, over the last decade new features have begun to emerge which reveal new ways to understand it. In particular an astonishing simplicity has been found at the heart of the maximally supersymmetric gauge theory in four spacetime dimensions, a close cousin of Quantum Chromodynamics (QCD), which describes the strong interactions.
My research team will use the new methods I have been developing to construct explicit results for scattering amplitudes and correlation functions. We will develop these results into general statements about the analytic behaviour of scattering amplitudes. The approach will be based on my recent work on new dualities between amplitudes and Wilson loops and on new symmetries revealing an underlying integrable structure. This research will allow us to answer key foundational questions such as the origin of Regge behaviour of scattering amplitudes in the high energy limit, and the connection to string theory in the limit of strong coupling. We will also pursue the connection to quantum groups and formulate the problem of scattering amplitudes in this language. This provide a solid mathematical underpinning to the formulation of the scattering problem in quantum field theories and allow application of techniques from the field of integrable systems to gauge theories.
An enormous effort goes into performing the calculations of scattering amplitudes needed to make precise predictions for collider experiments. New techniques to handle such calculations are much needed. We will develop new tools, such as the application of differential equation methods for loop integrals and analytic bootstrap methods for amplitudes. This research will allow us to greatly improve on existing efforts to calculate processes in QCD.
Max ERC Funding
1 992 452 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym IRIS
Project Infrared imaging and sensing: the single-photon frontier
Researcher (PI) Robert Hugh Hadfield
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Consolidator Grant (CoG), PE7, ERC-2014-CoG
Summary Infrared sensing technology has a central role to play in addressing 21st century global challenges in healthcare, security and environmental sensing. Promising new applications hinge on the ability to detect individual quanta of light: single photons. At infrared wavelengths this is a formidable task due to the low photon energy, and commercial-off-the-shelf technologies fall far short of the required performance. IRIS will engineer revolutionary photon counting infrared imaging and sensing solutions, with unprecedented spectral range, efficiency, timing resolution and low noise. Using state-of-the-art materials and nanofabrication techniques, novel superconducting detector technology will be scaled up from single pixels to large area photon counting arrays. Efficient readout and optical coupling solutions will be developed and implemented. IRIS will exploit space age cryogenic technology to create compact and mobile detector systems. IRIS will deploy these systems for the first time in revolutionary infrared imaging and sensing applications: dosimetry for laser based cancer treatment, atmospheric remote sensing of greenhouse gases and real-time distributed fibre sensing for geothermal energy.
Summary
Infrared sensing technology has a central role to play in addressing 21st century global challenges in healthcare, security and environmental sensing. Promising new applications hinge on the ability to detect individual quanta of light: single photons. At infrared wavelengths this is a formidable task due to the low photon energy, and commercial-off-the-shelf technologies fall far short of the required performance. IRIS will engineer revolutionary photon counting infrared imaging and sensing solutions, with unprecedented spectral range, efficiency, timing resolution and low noise. Using state-of-the-art materials and nanofabrication techniques, novel superconducting detector technology will be scaled up from single pixels to large area photon counting arrays. Efficient readout and optical coupling solutions will be developed and implemented. IRIS will exploit space age cryogenic technology to create compact and mobile detector systems. IRIS will deploy these systems for the first time in revolutionary infrared imaging and sensing applications: dosimetry for laser based cancer treatment, atmospheric remote sensing of greenhouse gases and real-time distributed fibre sensing for geothermal energy.
Max ERC Funding
1 792 906 €
Duration
Start date: 2015-06-01, End date: 2019-11-30
Project acronym MMUVR
Project Elucidating the role of ultraviolet radiation in melanoma
Researcher (PI) Richard Marais
Host Institution (HI) THE UNIVERSITY OF MANCHESTER
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Melanoma incidence continues to increase across Europe and compared to other cancers, it disproportionately affects young people, causing a significant loss in life-years in those affected. Ultraviolet radiation (UVR) is the only environmental risk factor in melanoma, but the underlying genetic constitution of the individual also plays an important role. However, our knowledge of the gene-gene and gene-environment interactions in melanomagenesis is still very limited and here we will use various cutting-edge technologies to investigate the role of UVR in melanoma initiation and progression. We have developed mouse models of UVR-driven melanoma that closely mimic UVR-driven melanoma in humans and these provide an unprecedented opportunity to dissect how different wavelengths and patterns of UVR exposure affect melanomagenesis. We propose a multidisciplinary programme of work to examine how host genetic susceptibility factors and responses such as DNA damage repair and inflammation affect melanoma development and progression following UVR exposure. We will integrate knowledge from our animal experiments with epidemiological, histopathological, clinical, and genetic features of human tumours to improve stratification of human melanoma and thereby assist clinical management of this deadly disease. Our overarching aim is to develop a validated stratification approach to melanoma patients that will assist in the development of effective public health campaigns for individuals at risk across Europe.
Summary
Melanoma incidence continues to increase across Europe and compared to other cancers, it disproportionately affects young people, causing a significant loss in life-years in those affected. Ultraviolet radiation (UVR) is the only environmental risk factor in melanoma, but the underlying genetic constitution of the individual also plays an important role. However, our knowledge of the gene-gene and gene-environment interactions in melanomagenesis is still very limited and here we will use various cutting-edge technologies to investigate the role of UVR in melanoma initiation and progression. We have developed mouse models of UVR-driven melanoma that closely mimic UVR-driven melanoma in humans and these provide an unprecedented opportunity to dissect how different wavelengths and patterns of UVR exposure affect melanomagenesis. We propose a multidisciplinary programme of work to examine how host genetic susceptibility factors and responses such as DNA damage repair and inflammation affect melanoma development and progression following UVR exposure. We will integrate knowledge from our animal experiments with epidemiological, histopathological, clinical, and genetic features of human tumours to improve stratification of human melanoma and thereby assist clinical management of this deadly disease. Our overarching aim is to develop a validated stratification approach to melanoma patients that will assist in the development of effective public health campaigns for individuals at risk across Europe.
Max ERC Funding
2 171 623 €
Duration
Start date: 2016-03-01, End date: 2021-02-28