Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AFRODITE
Project Advanced Fluid Research On Drag reduction In Turbulence Experiments
Researcher (PI) Jens Henrik Mikael Fransson
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Starting Grant (StG), PE8, ERC-2010-StG_20091028
Summary A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Summary
A hot topic in today's debate on global warming is drag reduction in aeronautics. The most beneficial concept for drag reduction is to maintain the major portion of the airfoil laminar. Estimations show that the potential drag reduction can be as much as 15%, which would give a significant reduction of NOx and CO emissions in the atmosphere considering that the number of aircraft take offs, only in the EU, is over 19 million per year. An important element for successful flow control, which can lead to a reduced aerodynamic drag, is enhanced physical understanding of the transition to turbulence process.
In previous wind tunnel measurements we have shown that roughness elements can be used to sensibly delay transition to turbulence. The result is revolutionary, since the common belief has been that surface roughness causes earlier transition and in turn increases the drag, and is a proof of concept of the passive control method per se. The beauty with a passive control technique is that no external energy has to be added to the flow system in order to perform the control, instead one uses the existing energy in the flow.
In this project proposal, AFRODITE, we will take this passive control method to the next level by making it twofold, more persistent and more robust. Transition prevention is the goal rather than transition delay and the method will be extended to simultaneously control separation, which is another unwanted flow phenomenon especially during airplane take offs. AFRODITE will be a catalyst for innovative research, which will lead to a cleaner sky.
Max ERC Funding
1 418 399 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym AMADEUS
Project Advancing CO2 Capture Materials by Atomic Scale Design: the Quest for Understanding
Researcher (PI) Christoph Rüdiger MÜLLER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE8, ERC-2018-COG
Summary Carbon dioxide capture and storage is a technology to mitigate climate change by removing CO2 from flue gas streams or the atmosphere and storing it in geological formations. While CO2 removal from natural gas by amine scrubbing is implemented on the large scale, the cost of such process is currently prohibitively expensive. Inexpensive alkali earth metal oxides (MgO and CaO) feature high theoretical CO2 uptakes, but suffer from poor cyclic stability and slow kinetics. Yet, the key objective of recent research on alkali earth metal oxide based CO2 sorbents has been the processing of inexpensive, naturally occurring CO2 sorbents, notably limestone and dolomite, to stabilize their modest CO2 uptake and to establish re-activation methods through engineering approaches. While this research demonstrated a landmark Megawatt (MW) scale viability of the process, our fundamental understanding of the underlying CO2 capture, regeneration and deactivation pathways did not improve. The latter knowledge is, however, vital for the rational design of improved, yet practical CaO and MgO sorbents. Hence this proposal is concerned with obtaining an understanding of the underlying mechanisms that control the ability of an alkali metal oxide to capture a large quantity of CO2 with a high rate, to regenerate and to operate with high cyclic stability. Achieving these aims relies on the ability to fabricate model structures and to characterize in great detail their surface chemistry, morphology, chemical composition and changes therein under reactive conditions. This makes the development of operando and in situ characterization tools an essential prerequisite. Advances in these areas shall allow achieving the overall goal of this project, viz. to formulate a roadmap to fabricate improved CO2 sorbents through their precisely engineered structure, composition and morphology.
Summary
Carbon dioxide capture and storage is a technology to mitigate climate change by removing CO2 from flue gas streams or the atmosphere and storing it in geological formations. While CO2 removal from natural gas by amine scrubbing is implemented on the large scale, the cost of such process is currently prohibitively expensive. Inexpensive alkali earth metal oxides (MgO and CaO) feature high theoretical CO2 uptakes, but suffer from poor cyclic stability and slow kinetics. Yet, the key objective of recent research on alkali earth metal oxide based CO2 sorbents has been the processing of inexpensive, naturally occurring CO2 sorbents, notably limestone and dolomite, to stabilize their modest CO2 uptake and to establish re-activation methods through engineering approaches. While this research demonstrated a landmark Megawatt (MW) scale viability of the process, our fundamental understanding of the underlying CO2 capture, regeneration and deactivation pathways did not improve. The latter knowledge is, however, vital for the rational design of improved, yet practical CaO and MgO sorbents. Hence this proposal is concerned with obtaining an understanding of the underlying mechanisms that control the ability of an alkali metal oxide to capture a large quantity of CO2 with a high rate, to regenerate and to operate with high cyclic stability. Achieving these aims relies on the ability to fabricate model structures and to characterize in great detail their surface chemistry, morphology, chemical composition and changes therein under reactive conditions. This makes the development of operando and in situ characterization tools an essential prerequisite. Advances in these areas shall allow achieving the overall goal of this project, viz. to formulate a roadmap to fabricate improved CO2 sorbents through their precisely engineered structure, composition and morphology.
Max ERC Funding
1 994 900 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym AUTO-CD
Project COELIAC DISEASE: UNDERSTANDING HOW A FOREIGN PROTEIN DRIVES AUTOANTIBODY FORMATION
Researcher (PI) Ludvig Magne Sollid
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), LS6, ERC-2010-AdG_20100317
Summary The goal of this project is to understand the mechanism of how highly disease specific autoantibodies are generated in response to the exposure to a foreign antigen. IgA autoantibodies reactive with the enzyme transglutaminase 2 (TG2) are typical of coeliac disease (CD). These antibodies are only present in subjects who are HLA-DQ2 or -DQ8, and their production is dependent on dietary gluten exposure. This suggests that CD4+ gluten reactive T cells, which are found in CD patients and which recognise gluten peptides deamidated by TG2 in context of DQ2 or DQ8, are implicated in the generation of these autoantibodies. Many small intestinal IgA+ plasma cells express membrane Ig hence allowing isolation of antigen specific cells. Whereas control subjects lack anti-TG2 IgA+ plasma cells, on average 10% of the plasma cells of CD patients are specific for TG2. We have sorted single TG2 reactive IgA+ plasma cells, cloned their VH and VL genes and expressed recombinant mAbs. So far we have expressed 26 TG2 specific mAbs. There is a strong bias for VH5-51 usage, and surprisingly the antibodies are modestly mutated. TG2 acts on specific glutamine residues and can either crosslink these to other proteins (transamidation) or hydrolyse the glutamine to a glutamate (deamidation). None of the 18 mAbs tested affected either transamidation or deamidation leading us to hypothesise that retained crosslinking ability of TG2 when bound to membrane Ig of B cells is an integral part of the anti-TG2 response. Four models of how activation of TG2 specific B cells is facilitated by TG2 crosslinking and the help of gluten reactive CD4 T cells are proposed. These four models will be extensively tested including doing in vivo assays with a newly generated transgenic anti-TG2 immunoglobulin knock-in mouse model.
Summary
The goal of this project is to understand the mechanism of how highly disease specific autoantibodies are generated in response to the exposure to a foreign antigen. IgA autoantibodies reactive with the enzyme transglutaminase 2 (TG2) are typical of coeliac disease (CD). These antibodies are only present in subjects who are HLA-DQ2 or -DQ8, and their production is dependent on dietary gluten exposure. This suggests that CD4+ gluten reactive T cells, which are found in CD patients and which recognise gluten peptides deamidated by TG2 in context of DQ2 or DQ8, are implicated in the generation of these autoantibodies. Many small intestinal IgA+ plasma cells express membrane Ig hence allowing isolation of antigen specific cells. Whereas control subjects lack anti-TG2 IgA+ plasma cells, on average 10% of the plasma cells of CD patients are specific for TG2. We have sorted single TG2 reactive IgA+ plasma cells, cloned their VH and VL genes and expressed recombinant mAbs. So far we have expressed 26 TG2 specific mAbs. There is a strong bias for VH5-51 usage, and surprisingly the antibodies are modestly mutated. TG2 acts on specific glutamine residues and can either crosslink these to other proteins (transamidation) or hydrolyse the glutamine to a glutamate (deamidation). None of the 18 mAbs tested affected either transamidation or deamidation leading us to hypothesise that retained crosslinking ability of TG2 when bound to membrane Ig of B cells is an integral part of the anti-TG2 response. Four models of how activation of TG2 specific B cells is facilitated by TG2 crosslinking and the help of gluten reactive CD4 T cells are proposed. These four models will be extensively tested including doing in vivo assays with a newly generated transgenic anti-TG2 immunoglobulin knock-in mouse model.
Max ERC Funding
2 291 045 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym BATMAN
Project Development of Quantitative Metrologies to Guide Lithium Ion Battery Manufacturing
Researcher (PI) Vanessa Wood
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Summary
Lithium ion batteries offer tremendous potential as an enabling technology for sustainable transportation and development. However, their widespread usage as the energy storage solution for electric mobility and grid-level integration of renewables is impeded by the fact that current state-of-the-art lithium ion batteries have energy densities that are too small, charge- and discharge rates that are too low, and costs that are too high. Highly publicized instances of catastrophic failure of lithium ion batteries raise questions of safety. Understanding the limitations to battery performance and origins of the degradation and failure is highly complex due to the difficulties in studying interrelated processes that take place at different length and time scales in a corrosive environment. In the project, we will (1) develop and implement quantitative methods to study the complex interrelations between structure and electrochemistry occurring at the nano-, micron-, and milli-scales in lithium ion battery active materials and electrodes, (2) conduct systematic experimental studies with our new techniques to understand the origins of performance limitations and to develop design guidelines for achieving high performance and safe batteries, and (3) investigate economically viable engineering solutions based on these guidelines to achieve high performance and safe lithium ion batteries.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BIOGEOS
Project Bio-mediated Geo-material Strengthening for engineering applications
Researcher (PI) Lyesse LALOUI
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Summary
Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Max ERC Funding
2 497 115 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym Born-Immune
Project Shaping of the Human Immune System by Primal Environmental Exposures In the Newborn Child
Researcher (PI) Klas Erik Petter Brodin
Host Institution (HI) KAROLINSKA INSTITUTET
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Summary
Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Max ERC Funding
1 422 339 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BROADimmune
Project Structural, genetic and functional analyses of broadly neutralizing antibodies against human pathogens
Researcher (PI) Antonio Lanzavecchia
Host Institution (HI) FONDAZIONE PER L ISTITUTO DI RICERCA IN BIOMEDICINA
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Summary
The overall goal of this project is to understand the molecular mechanisms that lead to the generation of potent and broadly neutralizing antibodies against medically relevant pathogens, and to identify the factors that limit their production in response to infection or vaccination with current vaccines. We will use high-throughput cellular screens to isolate from immune donors clonally related antibodies to different sites of influenza hemagglutinin, which will be fully characterized and sequenced in order to reconstruct their developmental pathways. Using this approach, we will ask fundamental questions with regards to the role of somatic mutations in affinity maturation and intraclonal diversification, which in some cases may lead to the generation of autoantibodies. We will combine crystallography and long time-scale molecular dynamics simulation to understand how mutations can increase affinity and broaden antibody specificity. By mapping the B and T cell response to all sites and conformations of influenza hemagglutinin, we will uncover the factors, such as insufficient T cell help or the instability of the pre-fusion hemagglutinin, that may limit the generation of broadly neutralizing antibodies. We will also perform a broad analysis of the antibody response to erythrocytes infected by P. falciparum to identify conserved epitopes on the parasite and to unravel the role of an enigmatic V gene that appears to be involved in response to blood-stage parasites. The hypotheses tested are strongly supported by preliminary observations from our own laboratory. While these studies will contribute to our understanding of B cell biology, the results obtained will also have translational implications for the development of potent and broad-spectrum antibodies, for the definition of correlates of protection, and for improving vaccine design.
Max ERC Funding
1 867 500 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym CAAXPROCESSINGHUMDIS
Project CAAX Protein Processing in Human DIsease: From Cancer to Progeria
Researcher (PI) Martin Olof Bergö
Host Institution (HI) GOETEBORGS UNIVERSITET
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Summary
My objective is to understand the physiologic and medical importance of the posttranslational processing of CAAX proteins (e.g., K-RAS and prelamin A) and to define the suitability of the CAAX protein processing enzymes as therapeutic targets for the treatment of cancer and progeria. CAAX proteins undergo three posttranslational processing steps at a carboxyl-terminal CAAX motif. These processing steps, which are mediated by four different enzymes (FTase, GGTase-I, RCE1, and ICMT), increase the hydrophobicity of the carboxyl terminus of the protein and thereby facilitate interactions with membrane surfaces. Somatic mutations in K-RAS deregulate cell growth and are etiologically involved in the pathogenesis of many forms of cancer. A mutation in prelamin A causes Hutchinson-Gilford progeria syndrome—a pediatric progeroid syndrome associated with misshaped cell nuclei and a host of aging-like disease phenotypes. One strategy to render the mutant K-RAS and prelamin A less harmful is to interfere with their ability to bind to membrane surfaces (e.g., the plasma membrane and the nuclear envelope). This could be accomplished by inhibiting the enzymes that modify the CAAX motif. My Specific Aims are: (1) To define the suitability of the CAAX processing enzymes as therapeutic targets in the treatment of K-RAS-induced lung cancer and leukemia; and (2) To test the hypothesis that inactivation of FTase or ICMT will ameliorate disease phenotypes of progeria. I have developed genetic strategies to produce lung cancer or leukemia in mice by activating an oncogenic K-RAS and simultaneously inactivating different CAAX processing enzymes. I will also inactivate several CAAX processing enzymes in mice with progeria—both before the emergence of phenotypes and after the development of advanced disease phenotypes. These experiments should reveal whether the absence of the different CAAX processing enzymes affects the onset, progression, or regression of cancer and progeria.
Max ERC Funding
1 689 600 €
Duration
Start date: 2008-06-01, End date: 2013-05-31
Project acronym CATACOAT
Project Nanostructured catalyst overcoats for renewable chemical production from biomass
Researcher (PI) Jeremy Scott LUTERBACHER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Summary
In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Max ERC Funding
1 785 195 €
Duration
Start date: 2017-12-01, End date: 2022-11-30