Project acronym ABDESIGN
Project Computational design of novel protein function in antibodies
Researcher (PI) Sarel-Jacob Fleishman
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Summary
We propose to elucidate the structural design principles of naturally occurring antibody complementarity-determining regions (CDRs) and to computationally design novel antibody functions. Antibodies represent the most versatile known system for molecular recognition. Research has yielded many insights into antibody design principles and promising biotechnological and pharmaceutical applications. Still, our understanding of how CDRs encode specific loop conformations lags far behind our understanding of structure-function relationships in non-immunological scaffolds. Thus, design of antibodies from first principles has not been demonstrated. We propose a computational-experimental strategy to address this challenge. We will: (a) characterize the design principles and sequence elements that rigidify antibody CDRs. Natural antibody loops will be subjected to computational modeling, crystallography, and a combined in vitro evolution and deep-sequencing approach to isolate sequence features that rigidify loop backbones; (b) develop a novel computational-design strategy, which uses the >1000 solved structures of antibodies deposited in structure databases to realistically model CDRs and design them to recognize proteins that have not been co-crystallized with antibodies. For example, we will design novel antibodies targeting insulin, for which clinically useful diagnostics are needed. By accessing much larger sequence/structure spaces than are available to natural immune-system repertoires and experimental methods, computational antibody design could produce higher-specificity and higher-affinity binders, even to challenging targets; and (c) develop new strategies to program conformational change in CDRs, generating, e.g., the first allosteric antibodies. These will allow targeting, in principle, of any molecule, potentially revolutionizing how antibodies are generated for research and medicine, providing new insights on the design principles of protein functional sites.
Max ERC Funding
1 499 930 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AngioBone
Project Angiogenic growth, specialization, ageing and regeneration
of bone vessels
Researcher (PI) Ralf Heinrich Adams
Host Institution (HI) WESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER
Call Details Advanced Grant (AdG), LS3, ERC-2013-ADG
Summary The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Summary
The skeleton and the sinusoidal vasculature form a functional unit with great relevance in health, regeneration, and disease. Currently, fundamental aspects of sinusoidal vessel growth, specialization, arteriovenous organization and the consequences for tissue perfusion, or the changes occurring during ageing remain unknown. Our preliminary data indicate that key principles of bone vascularization and the role of molecular regulators are highly distinct from other organs. I therefore propose to use powerful combination of mouse genetics, fate mapping, transcriptional profiling, computational biology, confocal and two-photon microscopy, micro-CT and PET imaging, biochemistry and cell biology to characterize the growth, differentiation, dynamics, and ageing of the bone vasculature. In addition to established angiogenic pathways, the role of highly promising novel candidate regulators will be investigated in endothelial cells and perivascular osteoprogenitors with sophisticated inducible and cell type-specific genetic methods in the mouse. Complementing these powerful in vivo approaches, 3D co-cultures generated by cell printing technologies will provide insight into the communication between different cell types. The dynamics of sinusoidal vessel growth and regeneration will be monitored by two-photon imaging in the skull. Finally, I will explore the architectural, cellular and molecular changes and the role of capillary endothelial subpopulations in the sinusoidal vasculature of ageing and osteoporotic mice.
Technological advancements, such as new transgenic strains, mutant models or cell printing approaches, are important aspects of this proposal. AngioBone will provide a first conceptual framework for normal and deregulated function of the bone sinusoidal vasculature. It will also break new ground by analyzing the role of blood vessels in ageing and identifying novel strategies for tissue engineering and, potentially, the prevention/treatment of osteoporosis.
Max ERC Funding
2 478 750 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ANOBEST
Project Structure function and pharmacology of calcium-activated chloride channels: Anoctamins and Bestrophins
Researcher (PI) Raimund Dutzler
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Advanced Grant (AdG), LS1, ERC-2013-ADG
Summary Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Summary
Calcium-activated chloride channels (CaCCs) play key roles in a range of physiological processes such as the control of membrane excitability, photoreception and epithelial secretion. Although the importance of these channels has been recognized for more than 30 years their molecular identity remained obscure. The recent discovery of two protein families encoding for CaCCs, Anoctamins and Bestrophins, was a scientific breakthrough that has provided first insight into two novel ion channel architectures. Within this proposal we aim to determine the first high resolution structures of members of both families and study their functional behavior by an interdisciplinary approach combining biochemistry, X-ray crystallography and electrophysiology. The structural investigation of eukaryotic membrane proteins is extremely challenging and will require us to investigate large numbers of candidates to single out family members with superior biochemical properties. During the last year we have made large progress in this direction. By screening numerous eukaryotic Anoctamins and prokaryotic Bestrophins we have identified well-behaved proteins for both families, which were successfully scaled-up and purified. Additional family members will be identified within the course of the project. For these stable proteins we plan to grow crystals diffracting to high resolution and to proceed with structure determination. With first structural information in hand we will perform detailed functional studies using electrophysiology and complementary biophysical techniques to gain mechanistic insight into ion permeation and gating. As the pharmacology of both families is still in its infancy we will in later stages also engage in the identification and characterization of inhibitors and activators of Anoctamins and Bestrophins to open up a field that may ultimately lead to the discovery of novel therapeutic strategies targeting calcium-activated chloride channels.
Max ERC Funding
2 176 000 €
Duration
Start date: 2014-02-01, End date: 2020-01-31
Project acronym ANTIVIRNA
Project Structural and mechanistic studies of RNA-guided and RNA-targeting antiviral defense pathways
Researcher (PI) Martin Jinek
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary The evolutionary pressures exerted by viruses on their host cells constitute a major force that drives the evolution of cellular antiviral mechanisms. The proposed research is motivated by our interest in the roles of protein-RNA interactions in both prokaryotic and eukaryotic antiviral pathways and will proceed in two directions. The first project stems from our current work on the CRISPR pathway, a recently discovered RNA-guided adaptive defense mechanism in bacteria and archaea that silences mobile genetic elements such as viruses (bacteriophages) and plasmids. CRISPR systems rely on short RNAs (crRNAs) that associate with CRISPR-associated (Cas) proteins and function as sequence-specific guides in the detection and destruction of invading nucleic acids. To obtain molecular insights into the mechanisms of crRNA-guided interference, we will pursue structural and functional studies of DNA-targeting ribonuceoprotein complexes from type II and III CRISPR systems. Our work will shed light on the function of these systems in microbial pathogenesis and provide a framework for the informed engineering of RNA-guided gene targeting technologies. The second proposed research direction centres on RNA-targeting antiviral strategies employed by the human innate immune system. Here, our work will focus on structural studies of major interferon-induced effector proteins, initially examining the allosteric activation mechanism of RNase L and subsequently focusing on other antiviral nucleases and RNA helicases, as well as mechanisms by which RNA viruses evade the innate immune response of the host. In our investigations, we plan to approach these questions using an integrated strategy combining structural biology, biochemistry and biophysics with cell-based functional studies. Together, our studies will provide fundamental molecular insights into RNA-centred antiviral mechanisms and their impact on human health and disease.
Summary
The evolutionary pressures exerted by viruses on their host cells constitute a major force that drives the evolution of cellular antiviral mechanisms. The proposed research is motivated by our interest in the roles of protein-RNA interactions in both prokaryotic and eukaryotic antiviral pathways and will proceed in two directions. The first project stems from our current work on the CRISPR pathway, a recently discovered RNA-guided adaptive defense mechanism in bacteria and archaea that silences mobile genetic elements such as viruses (bacteriophages) and plasmids. CRISPR systems rely on short RNAs (crRNAs) that associate with CRISPR-associated (Cas) proteins and function as sequence-specific guides in the detection and destruction of invading nucleic acids. To obtain molecular insights into the mechanisms of crRNA-guided interference, we will pursue structural and functional studies of DNA-targeting ribonuceoprotein complexes from type II and III CRISPR systems. Our work will shed light on the function of these systems in microbial pathogenesis and provide a framework for the informed engineering of RNA-guided gene targeting technologies. The second proposed research direction centres on RNA-targeting antiviral strategies employed by the human innate immune system. Here, our work will focus on structural studies of major interferon-induced effector proteins, initially examining the allosteric activation mechanism of RNase L and subsequently focusing on other antiviral nucleases and RNA helicases, as well as mechanisms by which RNA viruses evade the innate immune response of the host. In our investigations, we plan to approach these questions using an integrated strategy combining structural biology, biochemistry and biophysics with cell-based functional studies. Together, our studies will provide fundamental molecular insights into RNA-centred antiviral mechanisms and their impact on human health and disease.
Max ERC Funding
1 467 180 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym APPL
Project Anionic PhosPhoLipids in plant receptor kinase signaling
Researcher (PI) Yvon Jaillais
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary "In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Summary
"In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Max ERC Funding
1 797 840 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym assemblyNMR
Project 3D structures of bacterial supramolecular assemblies by solid-state NMR
Researcher (PI) Adam Lange
Host Institution (HI) FORSCHUNGSVERBUND BERLIN EV
Call Details Starting Grant (StG), LS1, ERC-2013-StG
Summary Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Summary
Supramolecular assemblies – formed by the self-assembly of hundreds of protein subunits – are part of bacterial nanomachines involved in key cellular processes. Important examples in pathogenic bacteria are pili and type 3 secretion systems (T3SS) that mediate adhesion to host cells and injection of virulence proteins. Structure determination at atomic resolution of such assemblies by standard techniques such as X-ray crystallography or solution NMR is severely limited: Intact T3SSs or pili cannot be crystallized and are also inherently insoluble. Cryo-electron microscopy techniques have recently made it possible to obtain low- and medium-resolution models, but atomic details have not been accessible at the resolution obtained in these studies, leading sometimes to inaccurate models.
I propose to use solid-state NMR (ssNMR) to fill this knowledge-gap. I could recently show that ssNMR on in vitro preparations of Salmonella T3SS needles constitutes a powerful approach to study the structure of this virulence factor. Our integrated approach also included results from electron microscopy and modeling as well as in vivo assays (Loquet et al., Nature 2012). This is the foundation of this application. I propose to extend ssNMR methodology to tackle the structures of even larger or more complex homo-oligomeric assemblies with up to 200 residues per monomeric subunit. We will apply such techniques to address the currently unknown 3D structures of type I pili and cytoskeletal bactofilin filaments. Furthermore, I want to develop strategies to directly study assemblies in a native-like setting. As a first application, I will study the 3D structure of T3SS needles when they are complemented with intact T3SSs purified from Salmonella or Shigella. The ultimate goal of this proposal is to establish ssNMR as a generally applicable method that allows solving the currently unknown structures of bacterial supramolecular assemblies at atomic resolution.
Max ERC Funding
1 456 000 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym AsthmaVir
Project The roles of innate lymphoid cells and rhinovirus in asthma exacerbations
Researcher (PI) Hergen Spits
Host Institution (HI) ACADEMISCH MEDISCH CENTRUM BIJ DE UNIVERSITEIT VAN AMSTERDAM
Call Details Advanced Grant (AdG), LS6, ERC-2013-ADG
Summary Asthma exacerbations represent a high unmet medical need in particular in young children. Human Rhinoviruses (HRV) are the main triggers of these exacerbations. Till now Th2 cells were considered the main initiating effector cell type in asthma in general and asthma exacerbations in particular. However, exaggerated Th2 cell activities alone do not explain all aspects of asthma and exacerbations. Building on our recent discovery of type 2 human innate lymphoid cells (ILC2) capable of promptly producing high amounts of IL-5, IL-9 and IL-13 upon activation and on mouse data pointing to an essential role of these cells in asthma and asthma exacerbations, ILC2 may be the main initiating cells in asthma exacerbations in humans. Thus we hypothesize that HRV directly or indirectly stimulate ILC2s to produce cytokines driving the effector functions leading to the end organ effects that characterize this debilitating disease. Targeting ILC2 and HRV in parallel will provide a highly attractive therapeutic option for the treatment of asthma exacerbations. In depth study of the mechanisms of ILC2 differentiation and function will lead to the design effective drugs targeting these cells; thus the first two objectives of this project are: 1) To unravel the lineage relationship of ILC populations and to decipher the signal transduction pathways that regulate the function of ILCs, 2) to test the functions of lung-residing human ILCs and the effects of compounds that affect these functions in mice which harbour a human immune system and human lung epithelium under homeostatic conditions and after infections with respiratory viruses. The third objective of this project is developing reagents that target HRV; to this end we will develop broadly reacting highly neutralizing human monoclonal antibodies that can be used for prophylaxis and therapy of patients at high risk for developing severe asthma exacerbations.
Summary
Asthma exacerbations represent a high unmet medical need in particular in young children. Human Rhinoviruses (HRV) are the main triggers of these exacerbations. Till now Th2 cells were considered the main initiating effector cell type in asthma in general and asthma exacerbations in particular. However, exaggerated Th2 cell activities alone do not explain all aspects of asthma and exacerbations. Building on our recent discovery of type 2 human innate lymphoid cells (ILC2) capable of promptly producing high amounts of IL-5, IL-9 and IL-13 upon activation and on mouse data pointing to an essential role of these cells in asthma and asthma exacerbations, ILC2 may be the main initiating cells in asthma exacerbations in humans. Thus we hypothesize that HRV directly or indirectly stimulate ILC2s to produce cytokines driving the effector functions leading to the end organ effects that characterize this debilitating disease. Targeting ILC2 and HRV in parallel will provide a highly attractive therapeutic option for the treatment of asthma exacerbations. In depth study of the mechanisms of ILC2 differentiation and function will lead to the design effective drugs targeting these cells; thus the first two objectives of this project are: 1) To unravel the lineage relationship of ILC populations and to decipher the signal transduction pathways that regulate the function of ILCs, 2) to test the functions of lung-residing human ILCs and the effects of compounds that affect these functions in mice which harbour a human immune system and human lung epithelium under homeostatic conditions and after infections with respiratory viruses. The third objective of this project is developing reagents that target HRV; to this end we will develop broadly reacting highly neutralizing human monoclonal antibodies that can be used for prophylaxis and therapy of patients at high risk for developing severe asthma exacerbations.
Max ERC Funding
2 499 593 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym AUTHORITARIANISM2.0:
Project Authoritarianism2.0: The Internet, Political Discussion, and Authoritarian Rule in China
Researcher (PI) Daniela Stockmann
Host Institution (HI) HERTIE SCHOOL OF GOVERNANCE GEMMEINNUTZIGE GMBH
Call Details Starting Grant (StG), SH2, ERC-2013-StG
Summary I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Summary
I suggest that perceptions of diversity and disagreement voiced in the on-line political discussion may play a key role in mobilizing citizens to voice their views and take action in authoritarian regimes. The empirical focus is the Chinese Internet. Subjective perceptions of group discussion among participants can significantly differ from the objective content of the discussion. These perceptions can have an independent effect on political engagement. Novel is also that I will study which technological settings (blogs, Weibo (Twitter), public hearings, etc) facilitate these perceptions.
I will address these novel issues by specifying the conditions and causal mechanisms that facilitate the rise of online public opinion. As an expansion to prior work, I will study passive in addition to active participants in online discussion. This is of particular interest because passive participants outnumber active participants.
My overall aim is to deepen our knowledge of how participants experience online political discussion in stabilizing or destabilizing authoritarian rule. To this end, I propose to work with one post-doc and two PhD research assistants on four objectives: Objective 1 is to explore what kinds of people engage in online discussions and differences between active and passive participants. Objective 2 is to understand how the technological settings that create the conditions for online discussion differ from each other. Objective 3 is to assess how active and passive participants see the diversity and disagreement in the discussion in these settings. Objective 4 is to assess whether citizens take action upon online political discussion depending on how they see it.
I will produce the first nationally representative survey on the experiences of participants in online political discussion in China. In addition to academics, this knowledge is of interest to policy-makers, professionals, and journalists aiming to understand authoritarian politics and media
Max ERC Funding
1 499 780 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym BacRafts
Project Architecture of bacterial lipid rafts; inhibition of virulence and antibiotic resistance using raft-disassembling small molecules
Researcher (PI) Daniel López Serrano
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS6, ERC-2013-StG
Summary Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Summary
Membranes of eukaryotic cells organize signal transduction proteins into microdomains or lipid rafts whose integrity is essential for numerous cellular processes. Lipid rafts has been considered a fundamental step to define the cellular complexity of eukaryotes, assuming that bacteria do not require such a sophisticated organization of their signaling networks. However, I have discovered that bacteria organize many signaling pathways in membrane microdomains similar to the eukaryotic lipid rafts. Perturbation of bacterial lipid rafts leads to a potent and simultaneous impairment of all raft-harbored signaling pathways. Consequently, the disassembly of lipid rafts in pathogens like Staphylococcus aureus generates a simultaneous inhibition of numerous infection-related processes that can be further explored to control bacterial infections. This unexpected sophistication in membrane organization is unprecedented in bacteria and hence, this proposal will explore the molecular basis of the assembly of bacterial lipid rafts and their role in the infection-related processes. These questions will be addressed in three main goals: First, I will elucidate the molecular components and the mechanism of assembly of bacterial lipid rafts using S. aureus as model organism. Second, I will dissect the molecular basis that links the functionality of the infection-related processes to the integrity of bacterial lipid rafts. Third, my collection of anti-raft small molecules that are able to disrupt lipid rafts will be tested as antimicrobial agents to prevent hospital-acquired infections, abrogate pre-existing infections and develop bacteria-free materials that can be used in clinical settings. I will use a number of molecular approaches in combination with cutting-edge techniques in flow cytometry, cell-imaging and transcriptomics to clarify the architecture and functionality of lipid rafts and demonstrate the feasibility of targeting lipid a new strategy for anti-microbial therapy.
Max ERC Funding
1 493 126 €
Duration
Start date: 2014-03-01, End date: 2019-02-28