Project acronym 3D Reloaded
Project 3D Reloaded: Novel Algorithms for 3D Shape Inference and Analysis
Researcher (PI) Daniel Cremers
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary Despite their amazing success, we believe that computer vision algorithms have only scratched the surface of what can be done in terms of modeling and understanding our world from images. We believe that novel image analysis techniques will be a major enabler and driving force behind next-generation technologies, enhancing everyday life and opening up radically new possibilities. And we believe that the key to achieving this is to develop algorithms for reconstructing and analyzing the 3D structure of our world.
In this project, we will focus on three lines of research:
A) We will develop algorithms for 3D reconstruction from standard color cameras and from RGB-D cameras. In particular, we will promote real-time-capable direct and dense methods. In contrast to the classical two-stage approach of sparse feature-point based motion estimation and subsequent dense reconstruction, these methods optimally exploit all color information to jointly estimate dense geometry and camera motion.
B) We will develop algorithms for 3D shape analysis, including rigid and non-rigid matching, decomposition and interpretation of 3D shapes. We will focus on algorithms which are optimal or near-optimal. One of the major computational challenges lies in generalizing existing 2D shape analysis techniques to shapes in 3D and 4D (temporal evolutions of 3D shape).
C) We will develop shape priors for 3D reconstruction. These can be learned from sample shapes or acquired during the reconstruction process. For example, when reconstructing a larger office algorithms may exploit the geometric self-similarity of the scene, storing a model of a chair and its multiple instances only once rather than multiple times.
Advancing the state of the art in geometric reconstruction and geometric analysis will have a profound impact well beyond computer vision. We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community.
Summary
Despite their amazing success, we believe that computer vision algorithms have only scratched the surface of what can be done in terms of modeling and understanding our world from images. We believe that novel image analysis techniques will be a major enabler and driving force behind next-generation technologies, enhancing everyday life and opening up radically new possibilities. And we believe that the key to achieving this is to develop algorithms for reconstructing and analyzing the 3D structure of our world.
In this project, we will focus on three lines of research:
A) We will develop algorithms for 3D reconstruction from standard color cameras and from RGB-D cameras. In particular, we will promote real-time-capable direct and dense methods. In contrast to the classical two-stage approach of sparse feature-point based motion estimation and subsequent dense reconstruction, these methods optimally exploit all color information to jointly estimate dense geometry and camera motion.
B) We will develop algorithms for 3D shape analysis, including rigid and non-rigid matching, decomposition and interpretation of 3D shapes. We will focus on algorithms which are optimal or near-optimal. One of the major computational challenges lies in generalizing existing 2D shape analysis techniques to shapes in 3D and 4D (temporal evolutions of 3D shape).
C) We will develop shape priors for 3D reconstruction. These can be learned from sample shapes or acquired during the reconstruction process. For example, when reconstructing a larger office algorithms may exploit the geometric self-similarity of the scene, storing a model of a chair and its multiple instances only once rather than multiple times.
Advancing the state of the art in geometric reconstruction and geometric analysis will have a profound impact well beyond computer vision. We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community.
Max ERC Funding
2 000 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ActiveCortex
Project Active dendrites and cortical associations
Researcher (PI) Matthew Larkum
Host Institution (HI) HUMBOLDT-UNIVERSITAET ZU BERLIN
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Converging studies from psychophysics in humans to single-cell recordings in monkeys and rodents indicate that most important cognitive processes depend on both feed-forward and feedback information interacting in the brain. Intriguingly, feedback to early cortical processing stages appears to play a causal role in these processes. Despite the central nature of this fact to understanding brain cognition, there is still no mechanistic explanation as to how this information could be so pivotal and what events take place that might be decisive. In this research program, we will test the hypothesis that the extraordinary performance of the cortex derives from an associative mechanism built into the basic neuronal unit: the pyramidal cell. The hypothesis is based on two important facts: (1) feedback information is conveyed predominantly to layer 1 and (2) the apical tuft dendrites that are the major recipient of this feedback information are highly electrogenic.
The research program is divided in to several workpackages to systematically investigate the hypothesis at every level. As a whole, we will investigate the causal link between intrinsic cellular activity and behaviour. To do this we will use eletrophysiological and optical techniques to record and influence cell the intrinsic properties of cells (in particular dendritic activity) in vivo and in vitro in rodents. In vivo experiments will have a specific focus on context driven behaviour and in vitro experiments on the impact of long-range (feedback-carrying) fibers on cell activity. The study will also focus on synaptic plasticity at the interface of feedback information and dendritic electrogenesis, namely synapses on to the tuft dendrite of pyramidal neurons. The proposed program will not only address a long-standing and important hypothesis but also provide a transformational contribution towards understanding the operation of the cerebral cortex.
Summary
Converging studies from psychophysics in humans to single-cell recordings in monkeys and rodents indicate that most important cognitive processes depend on both feed-forward and feedback information interacting in the brain. Intriguingly, feedback to early cortical processing stages appears to play a causal role in these processes. Despite the central nature of this fact to understanding brain cognition, there is still no mechanistic explanation as to how this information could be so pivotal and what events take place that might be decisive. In this research program, we will test the hypothesis that the extraordinary performance of the cortex derives from an associative mechanism built into the basic neuronal unit: the pyramidal cell. The hypothesis is based on two important facts: (1) feedback information is conveyed predominantly to layer 1 and (2) the apical tuft dendrites that are the major recipient of this feedback information are highly electrogenic.
The research program is divided in to several workpackages to systematically investigate the hypothesis at every level. As a whole, we will investigate the causal link between intrinsic cellular activity and behaviour. To do this we will use eletrophysiological and optical techniques to record and influence cell the intrinsic properties of cells (in particular dendritic activity) in vivo and in vitro in rodents. In vivo experiments will have a specific focus on context driven behaviour and in vitro experiments on the impact of long-range (feedback-carrying) fibers on cell activity. The study will also focus on synaptic plasticity at the interface of feedback information and dendritic electrogenesis, namely synapses on to the tuft dendrite of pyramidal neurons. The proposed program will not only address a long-standing and important hypothesis but also provide a transformational contribution towards understanding the operation of the cerebral cortex.
Max ERC Funding
2 386 304 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AdaptoSCOPE
Project Using cis-regulatory mutations to highlight polygenic adaptation in natural plant systems
Researcher (PI) Juliette de Meaux
Host Institution (HI) UNIVERSITAET ZU KOELN
Call Details Consolidator Grant (CoG), LS8, ERC-2014-CoG
Summary The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Summary
The goal of this project is to demonstrate that novel aspects of the molecular basis of Darwinian adaptation can be discovered if the polygenic basis of adaptation is taken into account. This project will use the genome-wide distribution of cis-regulatory variants to discover the molecular pathways that are optimized during adaptation via accumulation of small effect mutations. Current approaches include scans for outlier genes with strong population genetics signatures of selection, or large effect QTL associating with fitness. They can only reveal a small subset of the molecular changes recruited along adaptive paths. Here, instead, the distribution of small effect mutations will be used to make inferences on the targets of polygenic adaptation across divergent populations in each of the two closely related species, A. thaliana and A. lyrata. These species are both found at diverse latitudes and show sign of local adaptation to climatic differences. Mutations affecting cis-regulation will be identified in leaves of plants exposed to various temperature regimes triggering phenotypic responses of adaptive relevance. Their distribution in clusters of functionally connected genes will be quantified. The phylogeographic differences in the distribution of the mutations will be used to disentangle neutral from adaptive clusters of functionally connected genes in each of the two species. This project will identify the molecular pathways subjected collectively to natural selection and provide a completely novel view on adaptive landscapes. It will further examine whether local adaptation occurs by convergent evolution of molecular systems in plants. This approach has the potential to find broad applications in ecology and agriculture.
Max ERC Funding
1 683 120 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym AEDMOS
Project Attosecond Electron Dynamics in MOlecular Systems
Researcher (PI) Reinhard Kienberger
Host Institution (HI) TECHNISCHE UNIVERSITAET MUENCHEN
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Summary
Advanced insight into ever smaller structures of matter and their ever faster dynamics hold promise for pushing the frontiers of many fields in science and technology. Time-domain investigations of ultrafast microscopic processes are most successfully carried out by pump/probe experiments. Intense waveform-controlled few-cycle near-infrared laser pulses combined with isolated sub-femtosecond XUV (extreme UV) pulses have made possible direct access to electron motion on the atomic scale. These tools along with the techniques of laser-field-controlled XUV photoemission (“attosecond streaking”) and ultrafast UV-pump/XUV-probe spectroscopy have permitted real-time observation of electronic motion in experiments performed on atoms in the gas phase and of electronic transport processes in solids.
The purpose of this project is to to get insight into intra- and inter-molecular electron dynamics by extending attosecond spectroscopy to these processes. AEDMOS will allow control and real-time observation of a wide range of hyperfast fundamental processes directly on their natural, i.e. attosecond (1 as = EXP-18 s) time scale in molecules and molecular structures. In previous work we have successfully developed attosecond tools and techniques. By combining them with our experience in UHV technology and target preparation in a new beamline to be created in the framework of this project, we aim at investigating charge migration and transport in supramolecular assemblies, ultrafast electron dynamics in photocatalysis and dynamics of electron correlation in high-TC superconductors. These dynamics – of electronic excitation, exciton formation, relaxation, electron correlation and wave packet motion – are of broad scientific interest reaching from biomedicine to chemistry and physics and are pertinent to the development of many modern technologies including molecular electronics, optoelectronics, photovoltaics, light-to-chemical energy conversion and lossless energy transfer.
Max ERC Funding
1 999 375 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AI4REASON
Project Artificial Intelligence for Large-Scale Computer-Assisted Reasoning
Researcher (PI) Josef Urban
Host Institution (HI) CESKE VYSOKE UCENI TECHNICKE V PRAZE
Call Details Consolidator Grant (CoG), PE6, ERC-2014-CoG
Summary The goal of the AI4REASON project is a breakthrough in what is considered a very hard problem in AI and automation of reasoning, namely the problem of automatically proving theorems in large and complex theories. Such complex formal theories arise in projects aimed at verification of today's advanced mathematics such as the Formal Proof of the Kepler Conjecture (Flyspeck), verification of software and hardware designs such as the seL4 operating system kernel, and verification of other advanced systems and technologies on which today's information society critically depends.
It seems extremely complex and unlikely to design an explicitly programmed solution to the problem. However, we have recently demonstrated that the performance of existing approaches can be multiplied by data-driven AI methods that learn reasoning guidance from large proof corpora. The breakthrough will be achieved by developing such novel AI methods. First, we will devise suitable Automated Reasoning and Machine Learning methods that learn reasoning knowledge and steer the reasoning processes at various levels of granularity. Second, we will combine them into autonomous self-improving AI systems that interleave deduction and learning in positive feedback loops. Third, we will develop approaches that aggregate reasoning knowledge across many formal, semi-formal and informal corpora and deploy the methods as strong automation services for the formal proof community.
The expected outcome is our ability to prove automatically at least 50% more theorems in high-assurance projects such as Flyspeck and seL4, bringing a major breakthrough in formal reasoning and verification. As an AI effort, the project offers a unique path to large-scale semantic AI. The formal corpora concentrate centuries of deep human thinking in a computer-understandable form on which deductive and inductive AI can be combined and co-evolved, providing new insights into how humans do mathematics and science.
Summary
The goal of the AI4REASON project is a breakthrough in what is considered a very hard problem in AI and automation of reasoning, namely the problem of automatically proving theorems in large and complex theories. Such complex formal theories arise in projects aimed at verification of today's advanced mathematics such as the Formal Proof of the Kepler Conjecture (Flyspeck), verification of software and hardware designs such as the seL4 operating system kernel, and verification of other advanced systems and technologies on which today's information society critically depends.
It seems extremely complex and unlikely to design an explicitly programmed solution to the problem. However, we have recently demonstrated that the performance of existing approaches can be multiplied by data-driven AI methods that learn reasoning guidance from large proof corpora. The breakthrough will be achieved by developing such novel AI methods. First, we will devise suitable Automated Reasoning and Machine Learning methods that learn reasoning knowledge and steer the reasoning processes at various levels of granularity. Second, we will combine them into autonomous self-improving AI systems that interleave deduction and learning in positive feedback loops. Third, we will develop approaches that aggregate reasoning knowledge across many formal, semi-formal and informal corpora and deploy the methods as strong automation services for the formal proof community.
The expected outcome is our ability to prove automatically at least 50% more theorems in high-assurance projects such as Flyspeck and seL4, bringing a major breakthrough in formal reasoning and verification. As an AI effort, the project offers a unique path to large-scale semantic AI. The formal corpora concentrate centuries of deep human thinking in a computer-understandable form on which deductive and inductive AI can be combined and co-evolved, providing new insights into how humans do mathematics and science.
Max ERC Funding
1 499 500 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym AMPLify
Project Allocation Made PracticaL
Researcher (PI) Toby Walsh
Host Institution (HI) TECHNISCHE UNIVERSITAT BERLIN
Call Details Advanced Grant (AdG), PE6, ERC-2014-ADG
Summary Allocation Made PracticaL
The AMPLify project will lay the foundations of a new field, computational behavioural game theory that brings a computational perspective, computational implementation, and behavioural insights to game theory. These foundations will be laid by tackling a pressing problem facing society today: the efficient and fair allocation of resources and costs. Research in allocation has previously considered simple, abstract models like cake cutting. We propose to develop richer models that capture important new features like asynchronicity which occur in many markets being developed in our highly connected and online world. The mechanisms currently used to allocate resources and costs are limited to these simple, abstract models and also do not take into account how people actually behave in practice. We will therefore design new mechanisms for these richer allocation problems that exploit insights gained from behavioural game theory like loss aversion. We will also tackle the complexity of these rich models and mechanisms with computational tools. Finally, we will use computation to increase both the efficiency and fairness of allocations. As a result, we will be able to do more with fewer resources and greater fairness. Our initial case studies in resource and cost allocation demonstrate that we can improve efficiency greatly, offering one company alone savings of up to 10% (which is worth tens of millions of dollars every year). We predict even greater impact with the more sophisticated mechanisms to be developed during the course of this project.
Summary
Allocation Made PracticaL
The AMPLify project will lay the foundations of a new field, computational behavioural game theory that brings a computational perspective, computational implementation, and behavioural insights to game theory. These foundations will be laid by tackling a pressing problem facing society today: the efficient and fair allocation of resources and costs. Research in allocation has previously considered simple, abstract models like cake cutting. We propose to develop richer models that capture important new features like asynchronicity which occur in many markets being developed in our highly connected and online world. The mechanisms currently used to allocate resources and costs are limited to these simple, abstract models and also do not take into account how people actually behave in practice. We will therefore design new mechanisms for these richer allocation problems that exploit insights gained from behavioural game theory like loss aversion. We will also tackle the complexity of these rich models and mechanisms with computational tools. Finally, we will use computation to increase both the efficiency and fairness of allocations. As a result, we will be able to do more with fewer resources and greater fairness. Our initial case studies in resource and cost allocation demonstrate that we can improve efficiency greatly, offering one company alone savings of up to 10% (which is worth tens of millions of dollars every year). We predict even greater impact with the more sophisticated mechanisms to be developed during the course of this project.
Max ERC Funding
2 499 681 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym Angiolnc
Project Endothelial long non-coding RNAs
Researcher (PI) Stefanie Dimmeler
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Advanced Grant (AdG), LS4, ERC-2014-ADG
Summary Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Summary
Endothelial cells comprise the inner cellular cover of the vasculature, which delivers metabolites and oxygen to the tissue. Dysfunction of endothelial cells as it occurs during aging or metabolic syndromes can result in atherosclerosis, which can lead to myocardial infarction or stroke, whereas pathological angiogenesis contributes to tumor growth and diabetic retinopathy. Thus, endothelial cells play central roles in pathophysiological processes of many diseases including cardiovascular diseases and cancer. Many studies explored the regulation of endothelial cell functions by growth factors, but the impact of epigenetic mechanisms and particularly the role of novel non-coding RNAs is largely unknown. More than 70 % of the human genome encodes for non-coding RNAs (ncRNAs) and increasing evidence suggests that a significant portion of these ncRNAs are functionally active as RNA molecules. Angiolnc aims to explore the function of long ncRNAs (lncRNAs) and particular circular RNAs (circRNAs) in the endothelium. LncRNAs comprise a heterogenic class of RNAs with a length of > 200 nucleotides and circRNAs are generated by back splicing.
Angiolnc is based on the discovery of novel endothelial hypoxia-regulated lncRNAs and circRNAs by next generation sequencing. To begin to understand the potential functions of lncRNAs in the endothelium, we will study two lncRNAs, named Angiolnc1 und Angiolnc2, as prototypical examples of endothelial cell-enriched lncRNAs that are regulated by oxygen levels. We will further dissect the epigenetic mechanisms, by which these lncRNAs regulate endothelial cell function. In the second part of the application, we will determine the regulation and function of circRNAs, which may act as molecular sponges in the cytoplasm. Finally, we will study the function of identified lncRNAs and circRNAs in mouse models and measure their expression in human specimens in order to determine their role as therapeutic targets or diagnostic tools.
Max ERC Funding
2 497 398 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ANISOGEL
Project Injectable anisotropic microgel-in-hydrogel matrices for spinal cord repair
Researcher (PI) Laura De Laporte
Host Institution (HI) DWI LEIBNIZ-INSTITUT FUR INTERAKTIVE MATERIALIEN EV
Call Details Starting Grant (StG), PE8, ERC-2014-STG
Summary This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and organs, but currently lack structural organization and unidirectional orientation. The anisotropic, injectable hydrogels to be developed will mimic local extracellular matrix architectures that cells encounter in complex tissues (e.g. nerves, muscles). This project aims for the development of a biomimetic scaffold for spinal cord regeneration.
To realize such a major breakthrough, my group will focus on three research objectives. i) Poly(ethylene glycol) microgel-in-hydrogel matrices will be fabricated with the ability to create macroscopic order due to microgel shape anisotropy and magnetic alignment. Barrel-like microgels will be prepared using an in-mold polymerization technique. Their ability to self-assemble will be investigated in function of their dimensions, aspect ratio, crosslinking density, and volume fraction. Superparamagnetic nanoparticles will be included into the microgels to enable unidirectional orientation by means of a magnetic field. Subsequently, the oriented microgels will be interlocked within a master hydrogel. ii) The microgel-in-hydrogel matrices will be equipped with (bio)functional properties for spinal cord regeneration, i.e., to control and optimize mechanical anisotropy and biological signaling by in vitro cell growth experiments. iii) Selected hydrogel composites will be injected after rat spinal cord injury and directional tissue growth and animal functional behavior will be analyzed.
Succesful fabrication of the proposed microgel-in-hydrogel matrix will provide a new type of biomaterial, which enables investigating the effect of an anisotropic structure on physiological and pathological processes in vivo. This is a decisive step towards creating a clinical healing matrix for anisotropic tissue repair.
Summary
This project will engineer an injectable biomaterial that forms an anisotropic microheterogeneous structure in vivo. Injectable hydrogels enable a minimal invasive in situ generation of matrices for the regeneration of tissues and organs, but currently lack structural organization and unidirectional orientation. The anisotropic, injectable hydrogels to be developed will mimic local extracellular matrix architectures that cells encounter in complex tissues (e.g. nerves, muscles). This project aims for the development of a biomimetic scaffold for spinal cord regeneration.
To realize such a major breakthrough, my group will focus on three research objectives. i) Poly(ethylene glycol) microgel-in-hydrogel matrices will be fabricated with the ability to create macroscopic order due to microgel shape anisotropy and magnetic alignment. Barrel-like microgels will be prepared using an in-mold polymerization technique. Their ability to self-assemble will be investigated in function of their dimensions, aspect ratio, crosslinking density, and volume fraction. Superparamagnetic nanoparticles will be included into the microgels to enable unidirectional orientation by means of a magnetic field. Subsequently, the oriented microgels will be interlocked within a master hydrogel. ii) The microgel-in-hydrogel matrices will be equipped with (bio)functional properties for spinal cord regeneration, i.e., to control and optimize mechanical anisotropy and biological signaling by in vitro cell growth experiments. iii) Selected hydrogel composites will be injected after rat spinal cord injury and directional tissue growth and animal functional behavior will be analyzed.
Succesful fabrication of the proposed microgel-in-hydrogel matrix will provide a new type of biomaterial, which enables investigating the effect of an anisotropic structure on physiological and pathological processes in vivo. This is a decisive step towards creating a clinical healing matrix for anisotropic tissue repair.
Max ERC Funding
1 435 396 €
Duration
Start date: 2015-03-01, End date: 2020-02-29
Project acronym ApoptoMDS
Project Hematopoietic stem cell Apoptosis in bone marrow failure and MyeloDysplastic Syndromes: Friend or foe?
Researcher (PI) Miriam Erlacher
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Summary
Deregulated apoptotic signaling in hematopoietic stem and progenitor cells (HSPCs) strongly contributes to the pathogenesis and phenotypes of congenital bone marrow failure and myelodysplastic syndromes (MDS) and their progression to acute myeloid leukemia (AML). HSPCs are highly susceptible to apoptosis during bone marrow failure and early MDS, but AML evolution selects for apoptosis resistance. Little is known about the main apoptotic players and their regulators. ApoptoMDS will investigate the impact of apoptotic deregulation for pathogenesis, correlate apoptotic susceptibility with the kinetics of disease progression and characterize the mechanism by which apoptotic susceptibility turns into resistance. ApoptoMDS will draw on a large collection of patient-derived samples and genetically engineered mouse models to investigate disease progression in serially transplanted and xenotransplanted mice. How activated DNA damage checkpoint signaling contributes to syndrome phenotypes and HSPC hypersusceptibility to apoptosis will be assessed. Checkpoint activation confers a competitive disadvantage, and HSPCs undergoing malignant transformation are under high selective pressure to inactivate it. Checkpoint abrogation mitigates the hematological phenotype, but increases the risk of AML evolution. ApoptoMDS aims to analyze if inhibiting apoptosis in HSPCs from bone marrow failure and early-stage MDS can overcome the dilemma of checkpoint abrogation. Whether inhibiting apoptosis is sufficient to improve HSPC function will be tested on several levels and validated in patient-derived samples. How inhibiting apoptosis in the presence of functional checkpoint signaling influences malignant transformation kinetics will be assessed. If, as hypothesized, inhibiting apoptosis both mitigates hematological symptoms and delays AML evolution, ApoptoMDS will pave the way for novel therapeutic approaches to expand the less severe symptomatic period for patients with these syndromes.
Max ERC Funding
1 372 525 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ASTROROT
Project Unraveling interstellar chemistry with broadband microwave spectroscopy and next-generation telescope arrays
Researcher (PI) Melanie Schnell-Küpper
Host Institution (HI) STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY
Call Details Starting Grant (StG), PE4, ERC-2014-STG
Summary The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Summary
The goal of the research program, ASTROROT, is to significantly advance the knowledge of astrochemistry by exploring its molecular complexity and by discovering new molecule classes and key chemical processes in space. So far, mostly physical reasons were investigated for the observed variations in molecular abundances. We here propose to study the influence of chemistry on the molecular composition of the universe by combining unprecedentedly high-quality laboratory spectroscopy and pioneering telescope observations. Array telescopes provide new observations of rotational molecular emission, leading to an urgent need for microwave spectroscopic data of exotic molecules. We will use newly developed, unique broadband microwave spectrometers with the cold conditions of a molecular jet and the higher temperatures of a waveguide to mimic different interstellar conditions. Their key advantages are accurate transition intensities, tremendously reduced measurement times, and unique mixture compatibility.
Our laboratory experiments will motivate and guide astronomic observations, and enable their interpretation. The expected results are
• the exploration of molecular complexity by discovering new classes of molecules in space,
• the detection of isotopologues that provide information about the stage of chemical evolution,
• the generation of abundance maps of highly excited molecules to learn about their environment,
• the identification of key intermediates in astrochemical reactions.
The results will significantly foster and likely revolutionize our understanding of astrochemistry. The proposed research will go far beyond the state-of-the-art: We will use cutting-edge techniques both in the laboratory and at the telescope to greatly improve and speed the process of identifying molecular fingerprints. These techniques now enable studies at this important frontier of physics and chemistry that previously would have been prohibitively time-consuming or even impossible.
Max ERC Funding
1 499 904 €
Duration
Start date: 2015-05-01, End date: 2020-04-30