Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AGNOSTIC
Project Actively Enhanced Cognition based Framework for Design of Complex Systems
Researcher (PI) Björn Ottersten
Host Institution (HI) UNIVERSITE DU LUXEMBOURG
Call Details Advanced Grant (AdG), PE7, ERC-2016-ADG
Summary Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Summary
Parameterized mathematical models have been central to the understanding and design of communication, networking, and radar systems. However, they often lack the ability to model intricate interactions innate in complex systems. On the other hand, data-driven approaches do not need explicit mathematical models for data generation and have a wider applicability at the cost of flexibility. These approaches need labelled data, representing all the facets of the system interaction with the environment. With the aforementioned systems becoming increasingly complex with intricate interactions and operating in dynamic environments, the number of system configurations can be rather large leading to paucity of labelled data. Thus there are emerging networks of systems of critical importance whose cognition is not effectively covered by traditional approaches. AGNOSTIC uses the process of exploration through system probing and exploitation of observed data in an iterative manner drawing upon traditional model-based approaches and data-driven discriminative learning to enhance functionality, performance, and robustness through the notion of active cognition. AGNOSTIC clearly departs from a passive assimilation of data and aims to formalize the exploitation/exploration framework in dynamic environments. The development of this framework in three applications areas is central to AGNOSTIC. The project aims to provide active cognition in radar to learn the environment and other active systems to ensure situational awareness and coexistence; to apply active probing in radio access networks to infer network behaviour towards spectrum sharing and self-configuration; and to learn and adapt to user demand for content distribution in caching networks, drastically improving network efficiency. Although these cognitive systems interact with the environment in very different ways, sufficient abstraction allows cross-fertilization of insights and approaches motivating their joint treatment.
Max ERC Funding
2 499 595 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym BIOMEMOS
Project Higher order structure and function of biomembranes
Researcher (PI) Poul Nissen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Advanced Grant (AdG), LS1, ERC-2009-AdG
Summary The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Summary
The biomembrane is a prerequisite of life. It enables the cell to maintain a controlled environment and to establish electrochemical gradients as rapidly accessible energy stores. Biomembranes also provide scaffold for organisation and spatial definition of signal transmission in the cell. Crystal structures of membrane proteins are determined with an increasing pace. Along with functional studies integral studies of individual membrane proteins are now widely implemented. The BIOMEMOS proposal goes a step further and approaches the function of the biomembrane at the higher level of membrane protein complexes. Through a combination of X-ray crystallography, electrophysiology, general biochemistry, biophysics and bioinformatics and including also the application of single-particle cryo-EM and small-angle X-ray scattering, the structure and function of membrane protein complexes of key importance in life will be investigated. The specific targets for investigation in this proposal include: 1) higher-order complexes of P-type ATPase pumps such as signalling complexes of Na+,K+-ATPase, and 2) development of methods for structural studies of membrane protein complexes Based on my unique track record in structural studies of large, difficult structures (ribosomes and membrane proteins) in the setting of a thriving research community in structural biology and biomembrane research in Aarhus provides a critical momentum for a long-term activity. The activity will take advantage of the new possibilities offered by synchrotron sources in Europe. Furthermore, a single-particle cryo-EM research group formed on my initiative in Aarhus, and a well-established small-angle X-ray scattering community provides for an optimal setting through multiple cues in structural biology and functional studies
Max ERC Funding
2 444 180 €
Duration
Start date: 2010-04-01, End date: 2015-03-31
Project acronym BYPASSWITHOUTSURGERY
Project Reaching the effects of gastric bypass on diabetes and obesity without surgery
Researcher (PI) Jens Juul Holst
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Advanced Grant (AdG), LS4, ERC-2015-AdG
Summary Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Summary
Gastric bypass surgery results in massive weight loss and diabetes remission. The effect is superior to intensive medical treatment, showing that there are mechanisms within the body that can cure diabetes and obesity. Revealing the nature of these mechanisms could lead to new, cost-efficient, similarly effective, non-invasive treatments of these conditions. The hypothesis is that hyper-secretion of a number of gut hormones mediates the effect of surgery, as indicated by a series of our recent studies, demonstrating that hypersecretion of GLP-1, a hormone discovered in my laboratory and basis for the antidiabetic medication of millions of patients, is essential for the improved insulin secretion and glucose tolerance. But what are the mechanisms behind the up to 30-fold elevations in secretion of these hormones following surgery? Constantly with a translational scope, all elements involved in these responses will be addressed in this project, from detailed analysis of food items responsible for hormone secretion, to identification of the responsible regions of the gut, and to the molecular mechanisms leading to hypersecretion. Novel approaches for studies of human gut hormone secreting cells, including specific expression analysis, are combined with our advanced and unique isolated perfused gut preparations, the only tool that can provide physiologically relevant results with a translational potential regarding regulation of hormone secretion in the gut. This will lead to further groundbreaking experimental attempts to mimic and engage the identified mechanisms, creating similar hypersecretion and obtaining similar improvements as the operations in patients with obesity and diabetes. Based on our profound knowledge of gut hormone biology accumulated through decades of intensive and successful research and our successful elucidation of the antidiabetic actions of gastric bypass surgery, we are in a unique position to reach this ambitious goal.
Max ERC Funding
2 500 000 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CFS modelling
Project Chromosomal Common Fragile Sites: Unravelling their biological functions and the basis of their instability
Researcher (PI) Andres Joaquin Lopez-Contreras
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Summary
Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Max ERC Funding
1 499 711 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym CHROMATINREPLICATION
Project How to Replicate Chromatin - Maturation, Timing Control and Stress-Induced Aberrations
Researcher (PI) Anja Groth
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2011-StG_20101109
Summary Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Summary
Inheritance of DNA sequence and its proper organization into chromatin is fundamental for eukaryotic life. The challenge of propagating genetic and epigenetic information is met in S phase and entails genome-wide disruption and restoration of chromatin coupled to faithful copying of DNA. How specific chromatin structures are restored on new DNA and transmitted through mitotic cell division remains a fundamental question in biology central to understand cell fate and identity.
Chromatin restoration on new DNA involves a complex set of events including nucleosome assembly and remodelling, restoration of marks on DNA and histones, deposition of histone variants and establishment of higher order chromosomal structures including sister-chromatid cohesion. To dissect these fundamental processes and their coordination in time and space with DNA replication, we have developed a novel technology termed nascent chromatin capture (NCC) that provides unique possibility for biochemical and proteomic analysis of chromatin replication in human cells. I propose to apply this innovative cutting-edge technique for a comprehensive characterization of chromatin restoration during DNA replication and to reveal how replication timing and genotoxic stress impact on final chromatin state. This highly topical project brings together the fields of chromatin biology, DNA replication, epigenetics and genome stability and we expect to make groundbreaking discoveries that will improve our understanding of human development, somatic cell reprogramming and complex diseases like cancer.
The proposed research will 1) identify and characterize novel mechanisms in chromatin restoration and 2) address molecularly how replication timing and genotoxic insults influence chromatin maturation and final chromatin state.
Max ERC Funding
1 692 737 €
Duration
Start date: 2011-11-01, End date: 2017-04-30
Project acronym CosNeD
Project Radio wave propagation in heterogeneous media: implications on the electronics of Cosmic Neutrino Detectors
Researcher (PI) Alina Mihaela BADESCU
Host Institution (HI) UNIVERSITATEA POLITEHNICA DIN BUCURESTI
Call Details Starting Grant (StG), PE7, ERC-2016-STG
Summary Detection of cosmic neutrinos can answer very important questions related to some extremely energetic yet unexplained astrophysical sources such as: compact binary stars, accreting black holes, supernovae etc., key elements in understanding the evolution and fate of the Universe. Moreover, these particles carry the highest
energies per particle known to man, impossible to achieve in any present or foreseen man made accelerator devices thus their detection can test and probe extreme high energy physics.
One of the newest techniques for measuring high energy cosmic neutrinos regards their radio detection in natural salt mines. A first and essential step is to determine experimentally the radio wave attenuation length in salt mines, and this will represent the main goal of this project. The results shall be used to estimate the implications on the construction of the detector. The outcome of this project may rejuvenate the radio detection in salt technique and be a compelling case for Romanian involvement. The same measurements can be used: to validate and improve previous work on theoretical simulation models of propagation in heterogeneous media –a regime not very well understood (which represents another goal of the project), and to study the behavior of classical antennas in non-conventional media (the third major goal).
The results to be obtained would be immediately relevant in determination of the key parameters that describe a cosmic neutrino detector, its performances and limitations. The events detected by such a telescope will allow identification of individual sources indicating a step forward in “neutrino astronomy”. The extensive propagation and antenna behavior studies in heterogeneous media will be in the direct interest for the scientific community and have a prompt impact in telecommunications theory and industry.
Summary
Detection of cosmic neutrinos can answer very important questions related to some extremely energetic yet unexplained astrophysical sources such as: compact binary stars, accreting black holes, supernovae etc., key elements in understanding the evolution and fate of the Universe. Moreover, these particles carry the highest
energies per particle known to man, impossible to achieve in any present or foreseen man made accelerator devices thus their detection can test and probe extreme high energy physics.
One of the newest techniques for measuring high energy cosmic neutrinos regards their radio detection in natural salt mines. A first and essential step is to determine experimentally the radio wave attenuation length in salt mines, and this will represent the main goal of this project. The results shall be used to estimate the implications on the construction of the detector. The outcome of this project may rejuvenate the radio detection in salt technique and be a compelling case for Romanian involvement. The same measurements can be used: to validate and improve previous work on theoretical simulation models of propagation in heterogeneous media –a regime not very well understood (which represents another goal of the project), and to study the behavior of classical antennas in non-conventional media (the third major goal).
The results to be obtained would be immediately relevant in determination of the key parameters that describe a cosmic neutrino detector, its performances and limitations. The events detected by such a telescope will allow identification of individual sources indicating a step forward in “neutrino astronomy”. The extensive propagation and antenna behavior studies in heterogeneous media will be in the direct interest for the scientific community and have a prompt impact in telecommunications theory and industry.
Max ERC Funding
185 925 €
Duration
Start date: 2016-11-01, End date: 2018-10-31
Project acronym CSUMECH
Project Cholesterol and Sugar Uptake Mechanisms
Researcher (PI) Bjørn Pedersen
Host Institution (HI) AARHUS UNIVERSITET
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Summary
Cardiovascular disease, diabetes and cancer have a dramatic impact on modern society, and in great part are related to uptake of cholesterol and sugar. We still know surprisingly little about the molecular details of the processes that goes on in this essential part of human basic metabolism. This application addresses cholesterol and sugar transport and aim to elucidate the molecular mechanism of cholesterol and sugar uptake in humans. It moves the frontiers of the field by shifting the focus to in vitro work allowing hitherto untried structural and biochemical experiments to be performed.
Cholesterol uptake from the intestine is mediated by the membrane protein NPC1L1. Despite extensive research, the molecular mechanism of NPC1L1-dependent cholesterol uptake still remains largely unknown.
Facilitated sugar transport in humans is made possible by sugar transporters called GLUTs and SWEETs, and every cell possesses these sugar transport systems. For all these uptake systems structural information is sorely lacking to address important mechanistic questions to help elucidate their molecular mechanism.
I will address this using a complementary set of methods founded in macromolecular crystallography and electron microscopy to determine the 3-dimensional structures of key players in these uptake systems. My unpublished preliminary results have established the feasibility of this approach. This will be followed up by biochemical characterization of the molecular mechanism in vitro and in silico.
This high risk/high reward membrane protein proposal could lead to a breakthrough in how we approach human biochemical pathways that are linked to trans-membrane transport. An improved understanding of cholesterol and sugar homeostasis has tremendous potential for improving general public health, and furthermore this proposal will help to uncover general principles of endocytotic uptake and facilitated diffusion systems at the molecular level.
Max ERC Funding
1 499 848 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym DDRegulation
Project Regulation of DNA damage responses at the replication fork
Researcher (PI) Niels Mailand
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Consolidator Grant (CoG), LS1, ERC-2013-CoG
Summary This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Summary
This project aims at delineating the regulatory signaling processes that enable cells to overcome DNA damage during DNA replication, a major challenge to the integrity of the genome as the normal replication machinery is unable to replicate past DNA lesions. This may result in collapse of the replication fork, potentially giving rise to gross genomic alterations. To mitigate this threat, all cells have evolved DNA damage bypass strategies such as translesion DNA synthesis (TLS), involving low fidelity DNA polymerases that can replicate damaged DNA, albeit in an error-prone manner, offering a trade-off between limited mutagenesis and gross chromosomal instability. How DNA damage bypass pathways are regulated and integrated with DNA replication and repair remain poorly resolved questions fundamental to understanding genome stability maintenance and disease onset. Regulatory signaling mediated by the small modifier protein ubiquitin has a prominent role in orchestrating the reorganization of the replication fork necessary for overcoming DNA lesions, but this involvement has not been systematically explored. To remedy these gaps in our knowledge, I propose to implement a series of innovative complementary strategies to isolate and identify the regulatory factors and ubiquitin-dependent processes that promote DNA damage responses at the replication fork, allowing for subsequent in-depth characterization of their roles in protecting genome integrity by targeted functional studies. This project will enable an advanced level of mechanistic insight into key regulatory processes underlying replication-associated DNA damage responses that has not been feasible to achieve with exisiting methodologies, providing a realistic outlook for groundbreaking discoveries that will open up many new avenues for further research into mechanisms and biological functions of regulatory signaling processes in the DNA damage response and beyond.
Max ERC Funding
1 996 356 €
Duration
Start date: 2014-07-01, End date: 2019-06-30
Project acronym DECOR
Project Dynamic assembly and exchange of RNA polymerase II CTD factors
Researcher (PI) Richard Stefl
Host Institution (HI) Masarykova univerzita
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) largest subunit coordinates co-transcriptional processing and it is decorated by many processing factors throughout the transcription cycle. The composition of this supramolecular assembly is diverse and highly dynamic. Many of the factors associate with RNAPII weakly and transiently, and the association is dictated by different post-translational modification patterns and conformational changes of the CTD. To determine how these accessory factors assemble and exchange on the CTD of RNAPII has remained a major challenge. Here, we aim to unravel the structural and mechanistic bases for the dynamic assembly of RNAPII CTD with its processing factors.
Using NMR, we will determine high-resolution structures of several protein factors bound to the CTD carrying specific modifications. This will enable to decode how CTD modification patterns stimulate or prevent binding of a given processing factor. We will also establish the structural and mechanistic bases of proline isomerisation in the CTD that control the timing of isomer-specific protein-protein interactions. Next, we will combine NMR and SAXS approaches to unravel how the overall CTD structure is remodelled by binding of multiple copies of processing factors and how these factors cross-talk with each other. Finally, we will elucidate a mechanistic basis for the exchange of processing factors on the CTD.
Our study will answer the long-standing questions of how the overall CTD structure is modulated on binding to processing factors, and whether these factors cross-talk and compete with each other. The level of detail that we aim to achieve is currently not available for any transient molecular assemblies of such complexity. In this respect, the project will also provide knowledge and methodology for further studies of large and highly flexible molecular assemblies that still remain poorly understood.
Summary
The C-terminal domain (CTD) of the RNA polymerase II (RNAPII) largest subunit coordinates co-transcriptional processing and it is decorated by many processing factors throughout the transcription cycle. The composition of this supramolecular assembly is diverse and highly dynamic. Many of the factors associate with RNAPII weakly and transiently, and the association is dictated by different post-translational modification patterns and conformational changes of the CTD. To determine how these accessory factors assemble and exchange on the CTD of RNAPII has remained a major challenge. Here, we aim to unravel the structural and mechanistic bases for the dynamic assembly of RNAPII CTD with its processing factors.
Using NMR, we will determine high-resolution structures of several protein factors bound to the CTD carrying specific modifications. This will enable to decode how CTD modification patterns stimulate or prevent binding of a given processing factor. We will also establish the structural and mechanistic bases of proline isomerisation in the CTD that control the timing of isomer-specific protein-protein interactions. Next, we will combine NMR and SAXS approaches to unravel how the overall CTD structure is remodelled by binding of multiple copies of processing factors and how these factors cross-talk with each other. Finally, we will elucidate a mechanistic basis for the exchange of processing factors on the CTD.
Our study will answer the long-standing questions of how the overall CTD structure is modulated on binding to processing factors, and whether these factors cross-talk and compete with each other. The level of detail that we aim to achieve is currently not available for any transient molecular assemblies of such complexity. In this respect, the project will also provide knowledge and methodology for further studies of large and highly flexible molecular assemblies that still remain poorly understood.
Max ERC Funding
1 844 604 €
Duration
Start date: 2015-08-01, End date: 2020-07-31