Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlén
Host Institution (HI) LUNDS UNIVERSITET
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym ANTEGEFI
Project Analytic Techniques for Geometric and Functional Inequalities
Researcher (PI) Nicola Fusco
Host Institution (HI) UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II
Call Details Advanced Grant (AdG), PE1, ERC-2008-AdG
Summary Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Summary
Isoperimetric and Sobolev inequalities are the best known examples of geometric-functional inequalities. In recent years the PI and collaborators have obtained new and sharp quantitative versions of these and other important related inequalities. These results have been obtained by the combined use of classical symmetrization methods, new tools coming from mass transportation theory, deep geometric measure tools and ad hoc symmetrizations. The objective of this project is to further develop thes techniques in order to get: sharp quantitative versions of Faber-Krahn inequality, Gaussian isoperimetric inequality, Brunn-Minkowski inequality, Poincaré and Sobolev logarithm inequalities; sharp decay rates for the quantitative Sobolev inequalities and Polya-Szegö inequality.
Max ERC Funding
600 000 €
Duration
Start date: 2009-01-01, End date: 2013-12-31
Project acronym AROMA-CFD
Project Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics
Researcher (PI) Gianluigi Rozza
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Summary
The aim of AROMA-CFD is to create a team of scientists at SISSA for the development of Advanced Reduced Order Modelling techniques with a focus in Computational Fluid Dynamics (CFD), in order to face and overcome many current limitations of the state of the art and improve the capabilities of reduced order methodologies for more demanding applications in industrial, medical and applied sciences contexts. AROMA-CFD deals with strong methodological developments in numerical analysis, with a special emphasis on mathematical modelling and extensive exploitation of computational science and engineering. Several tasks have been identified to tackle important problems and open questions in reduced order modelling: study of bifurcations and instabilities in flows, increasing Reynolds number and guaranteeing stability, moving towards turbulent flows, considering complex geometrical parametrizations of shapes as computational domains into extended networks. A reduced computational and geometrical framework will be developed for nonlinear inverse problems, focusing on optimal flow control, shape optimization and uncertainty quantification. Further, all the advanced developments in reduced order modelling for CFD will be delivered for applications in multiphysics, such as fluid-structure interaction problems and general coupled phenomena involving inviscid, viscous and thermal flows, solids and porous media. The advanced developed framework within AROMA-CFD will provide attractive capabilities for several industrial and medical applications (e.g. aeronautical, mechanical, naval, off-shore, wind, sport, biomedical engineering, and cardiovascular surgery as well), combining high performance computing (in dedicated supercomputing centers) and advanced reduced order modelling (in common devices) to guarantee real time computing and visualization. A new open source software library for AROMA-CFD will be created: ITHACA, In real Time Highly Advanced Computational Applications.
Max ERC Funding
1 656 579 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym BIOSMA
Project Mathematics for Shape Memory Technologies in Biomechanics
Researcher (PI) Ulisse Stefanelli
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Summary
Shape Memory Alloys (SMAs) are nowadays widely exploited for the realization of innovative devices and have a great impact on the development of a variety of biomedical applications ranging from orthodontic archwires to vascular stents. The design, realization, and optimization of such devices are quite demanding tasks. Mathematics is involved in this process as a major tool in order to let the modeling more accurate, the numerical simulations more reliable, and the design more effective. Many material properties of SMAs such as martensitic reorientation, training, and ferromagnetic behavior, are still to be properly and efficiently addressed. Therefore, new modeling ideas, along with original analytical and numerical techniques, are required. This project is aimed at addressing novel mathematical issues in order to move from experimental materials results toward the solution of real-scale biomechanical Engineering problems. The research focus will be multidisciplinary and include modeling, analytic, numerical, and computational issues. A progress in the macroscopic description of SMAs, the computational simulation of real-scale SMA devices, and the optimization of the production processes will contribute to advance in the direction of innovative applications.
Max ERC Funding
700 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31
Project acronym BOPNIE
Project Boundary value problems for nonlinear integrable equations
Researcher (PI) Jonatan Carl Anders Lenells
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Summary
The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym CAVE
Project Challenges and Advancements in Virtual Elements
Researcher (PI) Lourenco Beirao da veiga
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Summary
The Virtual Element Method (VEM) is a novel technology for the discretization of partial differential equations (PDEs), that shares the same variational background as the Finite Element Method. First but not only, the VEM responds to the strongly increasing interest in using general polyhedral and polygonal meshes in the approximation of PDEs without the limit of using tetrahedral or hexahedral grids. By avoiding the explicit integration of the shape functions that span the discrete space and introducing an innovative construction of the stiffness matrixes, the VEM acquires very interesting properties and advantages with respect to more standard Galerkin methods, yet still keeping the same coding complexity. For instance, the VEM easily allows for polygonal/polyhedral meshes (even non-conforming) with non-convex elements and possibly with curved faces; it allows for discrete spaces of arbitrary C^k regularity on unstructured meshes.
The main scope of the project is to address the recent theoretical challenges posed by VEM and to assess whether this promising technology can achieve a breakthrough in applications. First, the theoretical and computational foundations of VEM will be made stronger. A deeper theoretical insight, supported by a wider numerical experience on benchmark problems, will be developed to gain a better understanding of the method's potentials and set the foundations for more applicative purposes. Second, we will focus our attention on two tough and up-to-date problems of practical interest: large deformation elasticity (where VEM can yield a dramatically more efficient handling of material inclusions, meshing of the domain and grid adaptivity, plus a much stronger robustness with respect to large grid distortions) and the cardiac bidomain model (where VEM can lead to a more accurate domain approximation through MRI data, a flexible refinement/de-refinement procedure along the propagation front, to an exact satisfaction of conservation laws).
Max ERC Funding
980 634 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym COMBOS
Project Collective phenomena in quantum and classical many body systems
Researcher (PI) Alessandro Giuliani
Host Institution (HI) UNIVERSITA DEGLI STUDI ROMA TRE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Summary
The collective behavior of quantum and classical many body systems such as ultracold atomic gases, nanowires, cuprates and micromagnets are currently subject of an intense experimental and theoretical research worldwide. Understanding the fascinating phenomena of Bose-Einstein condensation, Luttinger liquid vs non-Luttinger liquid behavior, high temperature superconductivity, and spontaneous formation of periodic patterns in magnetic systems, is an exciting challenge for theoreticians. Most of these phenomena are still far from being fully understood, even from a heuristic point of view. Unveiling the exotic properties of such systems by rigorous mathematical analysis is an important and difficult challenge for mathematical physics. In the last two decades, substantial progress has been made on various aspects of many-body theory, including Fermi liquids, Luttinger liquids, perturbed Ising models at criticality, bosonization, trapped Bose gases and spontaneous formation of periodic patterns. The techniques successfully employed in this field are diverse, and range from constructive renormalization group to functional variational estimates. In this research project we propose to investigate a number of statistical mechanics models by a combination of different mathematical methods. The objective is, on the one hand, to understand crossover phenomena, phase transitions and low-temperature states with broken symmetry, which are of interest in the theory of condensed matter and that we believe to be accessible to the currently available methods; on the other, to develop new techiques combining different and complementary methods, such as multiscale analysis and localization bounds, or reflection positivity and cluster expansion, which may be useful to further progress on important open problems, such as Bose-Einstein condensation, conformal invariance in non-integrable models, existence of magnetic or superconducting long range order.
Max ERC Funding
650 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym COMPAT
Project Complex Patterns for Strongly Interacting Dynamical Systems
Researcher (PI) Susanna Terracini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TORINO
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary This project focuses on nontrivial solutions of systems of differential equations characterized by strongly nonlinear interactions. We are interested in the effect of the nonlinearities on the emergence of non trivial self-organized structures. Such patterns correspond to selected solutions of the differential system possessing special symmetries or shadowing particular shapes. We want to understand, from the
mathematical point of view, what are the main mechanisms involved in the aggregation process in terms of the global variational structure of the problem. Following this common thread, we deal with both with the classical N-body problem of Celestial Mechanics, where interactions feature attractive singularities, and competition-diffusion systems, where pattern formation is driven by strongly repulsive forces. More
precisely, we are interested in periodic and bounded solutions, parabolic trajectories with the final intent to build complex motions and possibly obtain the symbolic dynamics for the general N–body problem. On the other hand, we deal with elliptic, parabolic and hyperbolic systems of differential equations with strongly competing interaction terms, modeling both the dynamics of competing populations (Lotka-
Volterra systems) and other interesting physical phenomena, among which the phase segregation of solitary waves of Gross-Pitaevskii systems arising in the study of multicomponent Bose-Einstein condensates. In particular, we will study existence, multiplicity and asymptotic expansions of solutions when the competition parameter tends to infinity. We shall be concerned with optimal partition problems
related to linear and nonlinear eigenvalues
Summary
This project focuses on nontrivial solutions of systems of differential equations characterized by strongly nonlinear interactions. We are interested in the effect of the nonlinearities on the emergence of non trivial self-organized structures. Such patterns correspond to selected solutions of the differential system possessing special symmetries or shadowing particular shapes. We want to understand, from the
mathematical point of view, what are the main mechanisms involved in the aggregation process in terms of the global variational structure of the problem. Following this common thread, we deal with both with the classical N-body problem of Celestial Mechanics, where interactions feature attractive singularities, and competition-diffusion systems, where pattern formation is driven by strongly repulsive forces. More
precisely, we are interested in periodic and bounded solutions, parabolic trajectories with the final intent to build complex motions and possibly obtain the symbolic dynamics for the general N–body problem. On the other hand, we deal with elliptic, parabolic and hyperbolic systems of differential equations with strongly competing interaction terms, modeling both the dynamics of competing populations (Lotka-
Volterra systems) and other interesting physical phenomena, among which the phase segregation of solitary waves of Gross-Pitaevskii systems arising in the study of multicomponent Bose-Einstein condensates. In particular, we will study existence, multiplicity and asymptotic expansions of solutions when the competition parameter tends to infinity. We shall be concerned with optimal partition problems
related to linear and nonlinear eigenvalues
Max ERC Funding
1 346 145 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CONLAWS
Project Hyperbolic Systems of Conservation Laws: singular limits, properties of solutions and control problems
Researcher (PI) Stefano Bianchini
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Summary
The research program concerns various theoretic aspects of hyperbolic conservation laws. In first place we plan to study the existence and uniqueness of solutions to systems of equations of mathematical physics with physic viscosity. This is one of the main open problems within the theory of conservation laws in one space dimension, which cannot be tackled relying on the techniques developed in the case where the viscosity matrix is the identity. Furthermore, this represents a first step toward the analysis of more complex relaxation and kinetic models with a finite number of velocities as for Broadwell equation, or with a continuous distribution of velocities as for Boltzmann equation. A second research topic concerns the study of conservation laws with large data. Even in this case the basic model is provided by fluidodynamic equations. We wish to extend the results of existence, uniqueness and continuous dependence of solutions to the case of large (in BV or in L^infty) data, at least for the simplest systems of mathematical physics such as the isentropic gas dynamics. A third research topic that we wish to pursue concerns the analysis of fine properties of solutions to conservation laws. Many of such properties depend on the existence of one or more entropies of the system. In particular, we have in mind to study the regularity and the concentration of the dissipativity measure for an entropic solution of a system of conservation laws. Finally, we wish to continue the study of hyperbolic equations from the control theory point of view along two directions: (i) the analysis of controllability and asymptotic stabilizability properties; (ii) the study of optimal control problems related to hyperbolic systems.
Max ERC Funding
422 000 €
Duration
Start date: 2009-11-01, End date: 2013-10-31
Project acronym DASTCO
Project Developing and Applying Structural Techniques for Combinatorial Objects
Researcher (PI) Paul Joseph Wollan
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary The proposed project will tackle a series of fundamental problems in discrete mathematics by studying labeled graphs, a generalization of graphs which readily apply to problems beyond graph theory. To achieve these goals will require both developing new graph theoretic tools and techniques as well as further expounding upon known methodologies.
The specific problems to be studied can be grouped into a series of semi-independent projects. The first focuses on signed graphs with applications to a conjecture of Seymour concerning 1-flowing binary matroids and a related conjecture on the intregality of polyhedra defined by a class of binary matrices. The second proposes to develop a theory of minors for directed graphs. Finally, the project looks at topological questions arising from graphs embedding in a surface and the classic problem of efficiently identifying the trivial knot. The range of topics considered will lead to the development of tools and techniques applicable to questions in discrete mathematics beyond those under direct study.
The project will create a research group incorporating graduate students and post doctoral researchers lead by the PI. Each area to be studied offers the potential for ground-breaking results at the same time offering numerous intermediate opportunities for scientific progress.
Summary
The proposed project will tackle a series of fundamental problems in discrete mathematics by studying labeled graphs, a generalization of graphs which readily apply to problems beyond graph theory. To achieve these goals will require both developing new graph theoretic tools and techniques as well as further expounding upon known methodologies.
The specific problems to be studied can be grouped into a series of semi-independent projects. The first focuses on signed graphs with applications to a conjecture of Seymour concerning 1-flowing binary matroids and a related conjecture on the intregality of polyhedra defined by a class of binary matrices. The second proposes to develop a theory of minors for directed graphs. Finally, the project looks at topological questions arising from graphs embedding in a surface and the classic problem of efficiently identifying the trivial knot. The range of topics considered will lead to the development of tools and techniques applicable to questions in discrete mathematics beyond those under direct study.
The project will create a research group incorporating graduate students and post doctoral researchers lead by the PI. Each area to be studied offers the potential for ground-breaking results at the same time offering numerous intermediate opportunities for scientific progress.
Max ERC Funding
850 000 €
Duration
Start date: 2011-12-01, End date: 2017-09-30