Project acronym 4D-GenEx
Project Spatio-temporal Organization and Expression of the Genome
Researcher (PI) Antoine COULON
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS2, ERC-2017-STG
Summary This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Summary
This project investigates the two-way relationship between spatio-temporal genome organization and coordinated gene regulation, through an approach at the interface between physics, computer science and biology.
In the nucleus, preferred positions are observed from chromosomes to single genes, in relation to normal and pathological cellular states. Evidence indicates a complex spatio-temporal coupling between co-regulated genes: e.g. certain genes cluster spatially when responding to similar factors and transcriptional noise patterns suggest domain-wide mechanisms. Yet, no individual experiment allows probing transcriptional coordination in 4 dimensions (FISH, live locus tracking, Hi-C...). Interpreting such data also critically requires theory (stochastic processes, statistical physics…). A lack of appropriate experimental/analytical approaches is impairing our understanding of the 4D genome.
Our proposal combines cutting-edge single-molecule imaging, signal-theory data analysis and physical modeling to study how genes coordinate in space and time in a single nucleus. Our objectives are to understand (a) competition/recycling of shared resources between genes within subnuclear compartments, (b) how enhancers communicate with genes domain-wide, and (c) the role of local conformational dynamics and supercoiling in gene co-regulation. Our organizing hypothesis is that, by acting on their microenvironment, genes shape their co-expression with other genes.
Building upon my expertise, we will use dual-color MS2/PP7 RNA labeling to visualize for the first time transcription and motion of pairs of hormone-responsive genes in real time. With our innovative signal analysis tools, we will extract spatio-temporal signatures of underlying processes, which we will investigate with stochastic modeling and validate through experimental perturbations. We expect to uncover how the functional organization of the linear genome relates to its physical properties and dynamics in 4D.
Max ERC Funding
1 499 750 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym ACTINIT
Project Brain-behavior forecasting: The causal determinants of spontaneous self-initiated action in the study of volition and the development of asynchronous brain-computer interfaces.
Researcher (PI) Aaron Schurger
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS5, ERC-2014-STG
Summary "How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Summary
"How are actions initiated by the human brain when there is no external sensory cue or other immediate imperative? How do subtle ongoing interactions within the brain and between the brain, body, and sensory context influence the spontaneous initiation of action? How should we approach the problem of trying to identify the neural events that cause spontaneous voluntary action? Much is understood about how the brain decides between competing alternatives, leading to different behavioral responses. But far less is known about how the brain decides "when" to perform an action, or "whether" to perform an action in the first place, especially in a context where there is no sensory cue to act such as during foraging. This project seeks to open a new chapter in the study of spontaneous voluntary action building on a novel hypothesis recently introduced by the applicant (Schurger et al, PNAS 2012) concerning the role of ongoing neural activity in action initiation. We introduce brain-behavior forecasting, the converse of movement-locked averaging, as an approach to identifying the neurodynamic states that commit the motor system to performing an action "now", and will apply it in the context of information foraging. Spontaneous action remains a profound mystery in the brain basis of behavior, in humans and other animals, and is also central to the problem of asynchronous intention-detection in brain-computer interfaces (BCIs). A BCI must not only interpret what the user intends, but also must detect "when" the user intends to act, and not respond otherwise. This remains the biggest challenge in the development of high-performance BCIs, whether invasive or non-invasive. This project will take a systematic and collaborative approach to the study of spontaneous self-initiated action, incorporating computational modeling, neuroimaging, and machine learning techniques towards a deeper understanding of voluntary behavior and the robust asynchronous detection of decisions-to-act."
Max ERC Funding
1 338 130 €
Duration
Start date: 2015-10-01, End date: 2020-09-30
Project acronym AltCheM
Project In vivo functional screens to decipher mechanisms of stochastically- and mutationally-induced chemoresistance in Acute Myeloid Leukemia
Researcher (PI) Alexandre PUISSANT
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Acute Myeloid Leukemia (AML), the most common leukemia diagnosed in adults, represents the paradigm of resistance to front-line therapies in hematology. Indeed, AML is so genetically complex that only few targeted therapies are currently tested in this disease and chemotherapy remains the only standard treatment for AML since the past four decades. Despite an initial sustained remission achieved by chemotherapeutic agents, almost all patients relapse with a chemoresistant minimal residual disease (MRD). The goal of my proposal is to characterize the still poorly understood biological mechanisms underlying persistence and emergence of MRD.
MRD is the consequence of the re-expansion of leukemia-initiating cells that are intrinsically more resistant to chemotherapy. This cell fraction may be stochastically more prone to survive front-line therapy regardless of their mutational status (the stochastic model), or genetically predetermined to resist by virtue of a collection of chemoprotective mutations (the mutational model).
I have already generated in mice, by consecutive rounds of chemotherapy, a stochastic MLL-AF9-driven chemoresistance model that I examined by RNA-sequencing. I will pursue the comprehensive cell autonomous and cell non-autonomous characterization of this chemoresistant AML disease using whole-exome and ChIP-sequencing.
To establish a mutationally-induced chemoresistant mouse model, I will conduct an innovative in vivo screen using pooled mutant open reading frame and shRNA libraries in order to predict which combinations of mutations, among those already known in AML, actively promote chemoresistance.
Finally, by combining genomic profiling and in vivo shRNA screening experiments, I will decipher the molecular mechanisms and identify the functional effectors of these two modes of resistance. Ultimately, I will then be able to firmly establish the fundamental relevance of the stochastic and/or the mutational model of chemoresistance for MRD genesis.
Summary
Acute Myeloid Leukemia (AML), the most common leukemia diagnosed in adults, represents the paradigm of resistance to front-line therapies in hematology. Indeed, AML is so genetically complex that only few targeted therapies are currently tested in this disease and chemotherapy remains the only standard treatment for AML since the past four decades. Despite an initial sustained remission achieved by chemotherapeutic agents, almost all patients relapse with a chemoresistant minimal residual disease (MRD). The goal of my proposal is to characterize the still poorly understood biological mechanisms underlying persistence and emergence of MRD.
MRD is the consequence of the re-expansion of leukemia-initiating cells that are intrinsically more resistant to chemotherapy. This cell fraction may be stochastically more prone to survive front-line therapy regardless of their mutational status (the stochastic model), or genetically predetermined to resist by virtue of a collection of chemoprotective mutations (the mutational model).
I have already generated in mice, by consecutive rounds of chemotherapy, a stochastic MLL-AF9-driven chemoresistance model that I examined by RNA-sequencing. I will pursue the comprehensive cell autonomous and cell non-autonomous characterization of this chemoresistant AML disease using whole-exome and ChIP-sequencing.
To establish a mutationally-induced chemoresistant mouse model, I will conduct an innovative in vivo screen using pooled mutant open reading frame and shRNA libraries in order to predict which combinations of mutations, among those already known in AML, actively promote chemoresistance.
Finally, by combining genomic profiling and in vivo shRNA screening experiments, I will decipher the molecular mechanisms and identify the functional effectors of these two modes of resistance. Ultimately, I will then be able to firmly establish the fundamental relevance of the stochastic and/or the mutational model of chemoresistance for MRD genesis.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym altEJrepair
Project Characterisation of DNA Double-Strand Break Repair by Alternative End-Joining: Potential Targets for Cancer Therapy
Researcher (PI) Raphael CECCALDI
Host Institution (HI) INSTITUT CURIE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Summary
DNA repair pathways evolved as an intricate network that senses DNA damage and resolves it in order to minimise genetic lesions and thus preventing tumour formation. Gaining in recognition the last few years, the alternative end-joining (alt-EJ) DNA repair pathway was recently shown to be up-regulated and required for cancer cell viability in the absence of homologous recombination-mediated repair (HR). Despite this integral role, the alt-EJ repair pathway remains poorly characterised in humans. As such, its molecular composition, regulation and crosstalk with HR and other repair pathways remain elusive. Additionally, the contribution of the alt-EJ pathway to tumour progression as well as the identification of a mutational signature associated with the use of alt-EJ has not yet been investigated. Moreover, the clinical relevance of developing small-molecule inhibitors targeting players in the alt-EJ pathway, such as the polymerase Pol Theta (Polθ), is of importance as current anticancer drug treatments have shown limited effectiveness in achieving cancer remission in patients with HR-deficient (HRD) tumours.
Here, we propose a novel, multidisciplinary approach that aims to characterise the players and mechanisms of action involved in the utilisation of alt-EJ in cancer. This understanding will better elucidate the changing interplay between different DNA repair pathways, thus shedding light on whether and how the use of alt-EJ contributes to the pathogenic history and survival of HRD tumours, eventually paving the way for the development of novel anticancer therapeutics.
For all the abovementioned reasons, we are convinced this project will have important implications in: 1) elucidating critical interconnections between DNA repair pathways, 2) improving the basic understanding of the composition, regulation and function of the alt-EJ pathway, and 3) facilitating the development of new synthetic lethality-based chemotherapeutics for the treatment of HRD tumours.
Max ERC Funding
1 498 750 €
Duration
Start date: 2017-07-01, End date: 2022-06-30
Project acronym ANTIViR
Project Molecular mechanisms of interferon-induced antiviral restriction and signalling
Researcher (PI) Caroline GOUJON
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS6, ERC-2017-STG
Summary Interferons (IFNs), which are signalling proteins produced by infected cells, are the first line of defence against viral infections. IFNs induce, in infected and neighbouring cells, the expression of hundreds of IFN-stimulated genes (ISGs). The ISGs in turn induce in cells a potent antiviral state, capable of preventing replication of most viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and influenza A virus (FLUAV). Identifying the antiviral ISGs and understanding their mechanisms of action is therefore crucial to progress in the fight against viruses.
ISGs playing a role in the antiviral state have been identified, such as human MX1, a well-known antiviral factor able to restrict numerous viruses including FLUAV, and MX2, an HIV-1 inhibitor. Both proteins bind to viral components but their detailed mechanisms of action, as well as the consequences of restriction on the activation of the innate immune system, remain unclear. Moreover, our preliminary work shows that additional anti-HIV-1 and anti-FLUAV ISGs remain to identify.
In this context, this proposal seeks an ERC StG funding to explore 3 major aims: 1) unravelling the mechanisms of antiviral action of MX proteins, by taking advantage of their similar structure and engineered chimeric proteins, and by using functional genetic screens to identify their cofactors; 2) investigating the consequences of incoming virus recognition by MX proteins on innate immune signalling, by altering their expression in target cells and measuring the cell response in terms of gene induction and cytokine production; 3) identifying and characterizing new ISGs able to inhibit viral replication with a combination of powerful approaches, including a whole-genome CRISPR/Cas9 knock-out screen.
Overall, this proposal will provide a better understanding of the molecular mechanisms involved in the antiviral effect of IFN, and may guide future efforts to identify novel therapeutic targets against major pathogenic viruses.
Summary
Interferons (IFNs), which are signalling proteins produced by infected cells, are the first line of defence against viral infections. IFNs induce, in infected and neighbouring cells, the expression of hundreds of IFN-stimulated genes (ISGs). The ISGs in turn induce in cells a potent antiviral state, capable of preventing replication of most viruses, including Human Immunodeficiency Virus type 1 (HIV-1) and influenza A virus (FLUAV). Identifying the antiviral ISGs and understanding their mechanisms of action is therefore crucial to progress in the fight against viruses.
ISGs playing a role in the antiviral state have been identified, such as human MX1, a well-known antiviral factor able to restrict numerous viruses including FLUAV, and MX2, an HIV-1 inhibitor. Both proteins bind to viral components but their detailed mechanisms of action, as well as the consequences of restriction on the activation of the innate immune system, remain unclear. Moreover, our preliminary work shows that additional anti-HIV-1 and anti-FLUAV ISGs remain to identify.
In this context, this proposal seeks an ERC StG funding to explore 3 major aims: 1) unravelling the mechanisms of antiviral action of MX proteins, by taking advantage of their similar structure and engineered chimeric proteins, and by using functional genetic screens to identify their cofactors; 2) investigating the consequences of incoming virus recognition by MX proteins on innate immune signalling, by altering their expression in target cells and measuring the cell response in terms of gene induction and cytokine production; 3) identifying and characterizing new ISGs able to inhibit viral replication with a combination of powerful approaches, including a whole-genome CRISPR/Cas9 knock-out screen.
Overall, this proposal will provide a better understanding of the molecular mechanisms involved in the antiviral effect of IFN, and may guide future efforts to identify novel therapeutic targets against major pathogenic viruses.
Max ERC Funding
1 499 794 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym ANTIVIRALRNAI
Project RNAi-mediated viral immunity in insects
Researcher (PI) Maria-Carla Saleh
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Summary
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Max ERC Funding
1 900 000 €
Duration
Start date: 2009-10-01, End date: 2014-12-31
Project acronym APPL
Project Anionic PhosPhoLipids in plant receptor kinase signaling
Researcher (PI) Yvon Jaillais
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary "In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Summary
"In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Max ERC Funding
1 797 840 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ARBODYNAMIC
Project Coupling dynamic population immunity profiles and host behaviours to arboviral spread
Researcher (PI) Henrik SALJE
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS8, ERC-2018-STG
Summary Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Summary
Arboviruses infect millions of people each year, however, mechanisms that drive viral emergence and maintenance remain largely unknown. A combination of host factors (e.g., human mobility), mosquito factors (e.g., abundance) and viral factors (e.g., transmissibility) interconnect to drive spread. Further, for endemic arboviruses, complex patterns of population immunity, built up over many years, appear key to the emergence of particular lineages. To disentangle the contribution of these different drivers, we need detailed data from the same pathogen system over a long time period from the same location. In addition, we need new methods, which can integrate these different data sources and allow appropriate mechanistic inferences.
In this project, I will use the most globally prevalent arbovirus, dengue virus, as a case study. I will focus on Thailand where all four dengue serotypes have circulated endemically for decades and excellent long-term data and isolates exist, to address two fundamental questions:
i) How do population-level patterns of immunity evolve over time and what is their impact on strain dynamics? I will use mechanistic models applied to historic serotype-specific case data to reconstruct the evolving immune profile of the population and explore the impact of immunity on viral diversity using sequences from archived isolates from each year over a 50-year period.
ii) How do human behaviors, vector densities interact with immunity to dictate spread? I will work with geolocated full genome sequences from across Thailand and use detailed data on how people move, their contact patterns, their immunity profiles and mosquito distributions to study competing hypotheses of how arboviruses spread. I will compare the key drivers of dengue spread with that found for outbreaks of Zika and chikungunya.
This proposal addresses fundamental questions about the mechanisms that drive arboviral emergence and spread that will be relevant across disease systems.
Max ERC Funding
1 499 896 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym AstroFunc
Project Molecular Studies of Astrocyte Function in Health and Disease
Researcher (PI) Matthew Guy Holt
Host Institution (HI) VIB
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Summary
Brain consists of two basic cell types – neurons and glia. However, the study of glia in brain function has traditionally been neglected in favor of their more “illustrious” counter-parts – neurons that are classed as the computational units of the brain. Glia have usually been classed as “brain glue” - a supportive matrix on which neurons grow and function. However, recent evidence suggests that glia are more than passive “glue” and actually modulate neuronal function. This has lead to the proposal of a “tripartite synapse”, which recognizes pre- and postsynaptic neuronal elements and glia as a unit.
However, what is still lacking is rudimentary information on how these cells actually function in situ. Here we propose taking a “bottom-up” approach, by identifying the molecules (and interactions) that control glial function in situ. This is complicated by the fact that glia show profound changes when placed into culture. To circumvent this, we will use recently developed cell sorting techniques, to rapidly isolate genetically marked glial cells from brain – which can then be analyzed using advanced biochemical and physiological techniques. The long-term aim is to identify proteins that can be “tagged” using transgenic technologies to allow protein function to be studied in real-time in vivo, using sophisticated imaging techniques. Given the number of proteins that may be identified we envisage developing new methods of generating transgenic animals that provide an attractive alternative to current “state-of-the art” technology.
The importance of studying glial function is given by the fact that every major brain pathology shows reactive gliosis. In the time it takes to read this abstract, 5 people in the EU will have suffered a stroke – not to mention those who suffer other forms of neurotrauma. Thus, understanding glial function is not only critical to understanding normal brain function, but also for relieving the burden of severe neurological injury and disease
Max ERC Funding
1 490 168 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym Autophagy in vitro
Project Reconstituting Autophagosome Biogenesis in vitro
Researcher (PI) Thomas Wollert
Host Institution (HI) INSTITUT PASTEUR
Call Details Starting Grant (StG), LS1, ERC-2014-STG
Summary Autophagy is a catabolic pathway that delivers cytoplasmic material to lysosomes for degradation. Under vegetative conditions, the pathway serves as quality control system, specifically targeting damaged or superfluous organelles and protein-aggregates. Cytotoxic stresses and starvation, however, induces the formation of larger autophagosomes that capture cargo unselectively. Autophagosomes are being generated from a cup-shaped precursor membrane, the isolation membrane, which expands to engulf cytoplasmic components. Sealing of this structure gives rise to the double-membrane surrounded autophagosomes. Two interconnected ubiquitin (Ub)-like conjugation systems coordinate the expansion of autophagosomes by conjugating the autophagy related (Atg)-protein Atg8 to the isolation membrane. In an effort to unravel the function of Atg8, we reconstituted the system on model membranes in vitro and found that Atg8 forms together with the Atg12–Atg5-Atg16 complex a membrane scaffold which is required for productive autophagy in yeast. Humans possess seven Atg8-homologs and two mutually exclusive Atg16-variants. Here, we propose to investigate the function of the human Ub-like conjugation system using a fully reconstituted in vitro system. The spatiotemporal organization of recombinant fluorescent-labeled proteins with synthetic model membranes will be investigated using confocal and TIRF-microscopy. Structural information will be obtained by atomic force and electron microscopy. Mechanistic insights, obtained from the in vitro work, will be tested in vivo in cultured human cells. We belief that revealing 1) the function of the human Ub-like conjugation system in autophagy, 2) the functional differences of Atg8-homologs and the two Atg16-variants Atg16L1 and TECPR1 and 3) how Atg16L1 coordinates non-canonical autophagy will provide essential insights into the pathophysiology of cancer, neurodegenerative, and autoimmune diseases.
Summary
Autophagy is a catabolic pathway that delivers cytoplasmic material to lysosomes for degradation. Under vegetative conditions, the pathway serves as quality control system, specifically targeting damaged or superfluous organelles and protein-aggregates. Cytotoxic stresses and starvation, however, induces the formation of larger autophagosomes that capture cargo unselectively. Autophagosomes are being generated from a cup-shaped precursor membrane, the isolation membrane, which expands to engulf cytoplasmic components. Sealing of this structure gives rise to the double-membrane surrounded autophagosomes. Two interconnected ubiquitin (Ub)-like conjugation systems coordinate the expansion of autophagosomes by conjugating the autophagy related (Atg)-protein Atg8 to the isolation membrane. In an effort to unravel the function of Atg8, we reconstituted the system on model membranes in vitro and found that Atg8 forms together with the Atg12–Atg5-Atg16 complex a membrane scaffold which is required for productive autophagy in yeast. Humans possess seven Atg8-homologs and two mutually exclusive Atg16-variants. Here, we propose to investigate the function of the human Ub-like conjugation system using a fully reconstituted in vitro system. The spatiotemporal organization of recombinant fluorescent-labeled proteins with synthetic model membranes will be investigated using confocal and TIRF-microscopy. Structural information will be obtained by atomic force and electron microscopy. Mechanistic insights, obtained from the in vitro work, will be tested in vivo in cultured human cells. We belief that revealing 1) the function of the human Ub-like conjugation system in autophagy, 2) the functional differences of Atg8-homologs and the two Atg16-variants Atg16L1 and TECPR1 and 3) how Atg16L1 coordinates non-canonical autophagy will provide essential insights into the pathophysiology of cancer, neurodegenerative, and autoimmune diseases.
Max ERC Funding
1 499 726 €
Duration
Start date: 2015-04-01, End date: 2020-03-31