Project acronym 4TH-NU-AVENUE
Project Search for a fourth neutrino with a PBq anti-neutrino source
Researcher (PI) Thierry Michel René Lasserre
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Summary
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym AdS-CFT-solvable
Project Origins of integrability in AdS/CFT correspondence
Researcher (PI) Vladimir Kazakov
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Summary
Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Max ERC Funding
1 456 140 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym AnoPath
Project Genetics of mosquito resistance to pathogens
Researcher (PI) Kenneth Du Souchet Vernick
Host Institution (HI) INSTITUT PASTEUR
Call Details Advanced Grant (AdG), LS2, ERC-2012-ADG_20120314
Summary Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Summary
Malaria parasite infection in humans has been called “the strongest known force for evolutionary selection in the recent history of the human genome”, and I hypothesize that a similar statement may apply to the mosquito vector, which is the definitive host of the malaria parasite. We previously discovered efficient malaria-resistance mechanisms in natural populations of the African malaria vector, Anopheles gambiae. Aim 1 of the proposed project will implement a novel genetic mapping design to systematically survey the mosquito population for common and rare genetic variants of strong effect against the human malaria parasite, Plasmodium falciparum. A product of the mapping design will be living mosquito families carrying the resistance loci. Aim 2 will use the segregating families to functionally dissect the underlying molecular mechanisms controlled by the loci, including determination of the pathogen specificity spectra of the host-defense traits. Aim 3 targets arbovirus transmission, where Anopheles mosquitoes transmit human malaria but not arboviruses such as Dengue and Chikungunya, even though the two mosquitoes bite the same people and are exposed to the same pathogens, often in malaria-arbovirus co-infections. We will use deep-sequencing to detect processing of the arbovirus dsRNA intermediates of replication produced by the RNAi pathway of the mosquitoes. The results will reveal important new information about differences in the efficiency and quality of the RNAi response between mosquitoes, which is likely to underlie at least part of the host specificity of arbovirus transmission. The 3 Aims will make significant contributions to understanding malaria and arbovirus transmission, major global public health problems, will aid the development of a next generation of vector surveillance and control tools, and will produce a definitive description of the major genetic factors influencing host-pathogen interactions in mosquito immunity.
Max ERC Funding
2 307 800 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym BACEMO
Project Bacterial Cell Morphogenesis
Researcher (PI) Rut Carballido Lopez
Host Institution (HI) INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE
Call Details Starting Grant (StG), LS3, ERC-2012-StG_20111109
Summary In bacteria, the though external cell wall and the intracellular actin-like (MreB) cytoskeleton are major determinants of cell shape. The biosynthetic pathways and chemical composition of the cell wall, a three dimensional polymer network that is one of the most prominent targets for antibiotics, are well understood. However, despite decades of study, little is known about the complex cell wall ultrastructure and the molecular mechanisms that control cell wall morphogenesis in time and space. In rod-shaped bacteria, MreB homologues assemble into dynamic structures thought to control shape by serving as organizers for the movement and assembly of macromolecular machineries that effect sidewall elongation. However, the mechanistic details used by the MreB cytoskeleton to fulfil this role remain to be elucidated. Furthermore, development of high-resolution microscopy techniques has led to new breakthroughs this year, published by our lab and others, which are shaking the model developed over the last decade and re-questioning the MreB “actin cytoskeleton” designation.
The aim of this project is to combine powerful genetic, biochemical, genomic and systems biology approaches available in the model bacterium Bacillus subtilis with modern high-resolution light microscopic techniques to study the dynamics and mechanistic details of the MreB cytoskeleton and of CW assembly. Parameters measured by the different approaches will be combined to quantitatively describe the features of bacterial cell morphogenesis.
Summary
In bacteria, the though external cell wall and the intracellular actin-like (MreB) cytoskeleton are major determinants of cell shape. The biosynthetic pathways and chemical composition of the cell wall, a three dimensional polymer network that is one of the most prominent targets for antibiotics, are well understood. However, despite decades of study, little is known about the complex cell wall ultrastructure and the molecular mechanisms that control cell wall morphogenesis in time and space. In rod-shaped bacteria, MreB homologues assemble into dynamic structures thought to control shape by serving as organizers for the movement and assembly of macromolecular machineries that effect sidewall elongation. However, the mechanistic details used by the MreB cytoskeleton to fulfil this role remain to be elucidated. Furthermore, development of high-resolution microscopy techniques has led to new breakthroughs this year, published by our lab and others, which are shaking the model developed over the last decade and re-questioning the MreB “actin cytoskeleton” designation.
The aim of this project is to combine powerful genetic, biochemical, genomic and systems biology approaches available in the model bacterium Bacillus subtilis with modern high-resolution light microscopic techniques to study the dynamics and mechanistic details of the MreB cytoskeleton and of CW assembly. Parameters measured by the different approaches will be combined to quantitatively describe the features of bacterial cell morphogenesis.
Max ERC Funding
1 650 050 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym BIOMECAMORPH
Project The Biomechanics of Epithelial Cell and Tissue Morphogenesis
Researcher (PI) Thomas Marie Michel Lecuit
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2012-ADG_20120314
Summary Tissue morphogenesis is a complex process that emerges from spatially controlled patterns of cell shape changes. Dedicated genetic programmes regulate cell behaviours, exemplified in animals by the specification of apical constriction in invaginating epithelial tissues, or the orientation of cell intercalation during tissue extension. This genetic control is constrained by physical properties of cells that dictate how they can modify their shape. A major challenge is to understand how biochemical pathways control subcellular mechanics in epithelia, such as how forces are produced by interactions between actin filaments and myosin motors, and how these forces are transmitted at cell junctions. The major objective of our project is to investigate the fundamental principles of epithelial mechanics and to understand how intercellular signals and mechanical coupling between cells coordinate individual behaviours at the tissue level.
We will study early Drosophila embryogenesis and combine quantitative cell biological studies of cell dynamics, biophysical characterization of cell mechanics and genetic control of cell signalling to answer the following questions: i) how are forces generated, in particular what underlies deformation and stabilization of cell shape by actomyosin networks, and pulsatile contractility; ii) how are forces transmitted at junctions, what are the feedback interactions between tension generation and transmission; iii) how are individual cell mechanics orchestrated at the tissue level to yield collective tissue morphogenesis?
We expect to encapsulate the information-based, cell biological and physical descriptions of morphogenesis in a single, coherent framework. The project should impact more broadly on morphogenesis in other organisms and shed light on the mechanisms underlying robustness and plasticity in epithelia.
Summary
Tissue morphogenesis is a complex process that emerges from spatially controlled patterns of cell shape changes. Dedicated genetic programmes regulate cell behaviours, exemplified in animals by the specification of apical constriction in invaginating epithelial tissues, or the orientation of cell intercalation during tissue extension. This genetic control is constrained by physical properties of cells that dictate how they can modify their shape. A major challenge is to understand how biochemical pathways control subcellular mechanics in epithelia, such as how forces are produced by interactions between actin filaments and myosin motors, and how these forces are transmitted at cell junctions. The major objective of our project is to investigate the fundamental principles of epithelial mechanics and to understand how intercellular signals and mechanical coupling between cells coordinate individual behaviours at the tissue level.
We will study early Drosophila embryogenesis and combine quantitative cell biological studies of cell dynamics, biophysical characterization of cell mechanics and genetic control of cell signalling to answer the following questions: i) how are forces generated, in particular what underlies deformation and stabilization of cell shape by actomyosin networks, and pulsatile contractility; ii) how are forces transmitted at junctions, what are the feedback interactions between tension generation and transmission; iii) how are individual cell mechanics orchestrated at the tissue level to yield collective tissue morphogenesis?
We expect to encapsulate the information-based, cell biological and physical descriptions of morphogenesis in a single, coherent framework. The project should impact more broadly on morphogenesis in other organisms and shed light on the mechanisms underlying robustness and plasticity in epithelia.
Max ERC Funding
2 473 313 €
Duration
Start date: 2013-05-01, End date: 2018-04-30
Project acronym CEVAL
Project Clonal evolution in acute leukemia: from molecular and functional profiling towards therapeutic intervention
Researcher (PI) Jean Soulier
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Starting Grant (StG), LS7, ERC-2012-StG_20111109
Summary "Clonal evolution represents a driving force for cancer cells and a major challenge for therapy. There is a long-standing knowledge that clonal diversification and selection allows cancer cells to pass through distinct steps of transformation. More recently has emerged the concept that ""more malignant"" leukemia subclones can persist after treatment leading to relapse. My research is focused on two diseases which represent privileged models to study clonal evolution: Fanconi anemia (FA), which is a genetic condition predisposing to acute leukemia, and T-cell acute lymphoblastic leukemia (T-ALL), an aggressive leukemia which frequently relapses. The goal of this project is to decipher the crucial molecular and cellular events that drive gain of malignancy and to design new strategies to follow up and treat the patients. Specifically, we aim to:
1. Identify the key pathways involved in leukemia progression at two major steps: from pre-leukemia to overt leukemia (in FA), and from primary diagnosis to relapse (in T-ALL). This aim will use high-throughput molecular profiling and functional characterization of longitudinal samples from patients.
2. Model leukemia progression in vivo to functionally validate these pathways. We have developed read-outs based on gene silencing in human primary cells from patients followed by leukemia monitoring in immunodeficient mice.
3. Define new strategies to prevent the transition towards acute leukemia in pre-leukemic states in FA patients. We will develop new markers for transformation that should help in monitoring therapeutic intervention.
4. Test drugs in pre-clinical models to target critical pathways of relapsed ALL. We will use xenografted T-ALL which recapitulates leukemia progression.
Completion of this innovative transversal project should markedly improve the knowledge on tumor progression and lead to new strategies to prevent, early detect and/or treat relapse, with the final objective to cure more patients."
Summary
"Clonal evolution represents a driving force for cancer cells and a major challenge for therapy. There is a long-standing knowledge that clonal diversification and selection allows cancer cells to pass through distinct steps of transformation. More recently has emerged the concept that ""more malignant"" leukemia subclones can persist after treatment leading to relapse. My research is focused on two diseases which represent privileged models to study clonal evolution: Fanconi anemia (FA), which is a genetic condition predisposing to acute leukemia, and T-cell acute lymphoblastic leukemia (T-ALL), an aggressive leukemia which frequently relapses. The goal of this project is to decipher the crucial molecular and cellular events that drive gain of malignancy and to design new strategies to follow up and treat the patients. Specifically, we aim to:
1. Identify the key pathways involved in leukemia progression at two major steps: from pre-leukemia to overt leukemia (in FA), and from primary diagnosis to relapse (in T-ALL). This aim will use high-throughput molecular profiling and functional characterization of longitudinal samples from patients.
2. Model leukemia progression in vivo to functionally validate these pathways. We have developed read-outs based on gene silencing in human primary cells from patients followed by leukemia monitoring in immunodeficient mice.
3. Define new strategies to prevent the transition towards acute leukemia in pre-leukemic states in FA patients. We will develop new markers for transformation that should help in monitoring therapeutic intervention.
4. Test drugs in pre-clinical models to target critical pathways of relapsed ALL. We will use xenografted T-ALL which recapitulates leukemia progression.
Completion of this innovative transversal project should markedly improve the knowledge on tumor progression and lead to new strategies to prevent, early detect and/or treat relapse, with the final objective to cure more patients."
Max ERC Funding
1 497 028 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym CHESS
Project Challenges in Extraction and Separation of Sources
Researcher (PI) Christian Patrice Jutten
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Advanced Grant (AdG), PE7, ERC-2012-ADG_20120216
Summary Separation/extraction of sources are wide concepts in information sciences, since sensors provide information mixing and an essential step consists in separating or extracting useful information from unuseful one, called noise. In this project, we consider three challenges.
The first one is the multimodality. Indeed, with the multiplication of kinds of sensors, in many areas like biomedical signal processing, hyperspectral imaging, etc. there are many ways for recording the same physical phenomenon leading thus to multimodal data. Multimodality has been studied in the framework of human-computer interface or in data fusion, but never at the signal level. The objective is to provide a general framework for modeling classical multimodal properties, like complementarity, redundancy, equivalence, etc. as of function of source signals.
The second challenge is nonlinearity. Indeed, there exist a few cases where the mixtures are essentially nonlinear, e.g. with chemical sensors. The main objective is to enlarge results on identifiability conditions for new classes of nonlinearities and priors on sources.
The third challenge is the data size. For high-dimension data (e.g. EEG or MRI in brain imaging), separating all the sources is neither tractable nor relevant, since one would like to only extract the useful sources. Conversely, for a small number of sensors, especially smaller than the number of sources, it is again necessary to only focus on the useful signals. The main objective is to develop generic approaches able to only extract useful signals, based on simple reference signal, modeling weak properties of the useful signal.
Finally, validation and relevant modeling must be based on actual signals and problems. In this project, theoretical results and algorithms will be developed in interaction with applications in biomedical engineering (brain-computer interface, EEG, fMRI), chemical engineering, audio-visual scene analysis and hyperspectral imaging.
Summary
Separation/extraction of sources are wide concepts in information sciences, since sensors provide information mixing and an essential step consists in separating or extracting useful information from unuseful one, called noise. In this project, we consider three challenges.
The first one is the multimodality. Indeed, with the multiplication of kinds of sensors, in many areas like biomedical signal processing, hyperspectral imaging, etc. there are many ways for recording the same physical phenomenon leading thus to multimodal data. Multimodality has been studied in the framework of human-computer interface or in data fusion, but never at the signal level. The objective is to provide a general framework for modeling classical multimodal properties, like complementarity, redundancy, equivalence, etc. as of function of source signals.
The second challenge is nonlinearity. Indeed, there exist a few cases where the mixtures are essentially nonlinear, e.g. with chemical sensors. The main objective is to enlarge results on identifiability conditions for new classes of nonlinearities and priors on sources.
The third challenge is the data size. For high-dimension data (e.g. EEG or MRI in brain imaging), separating all the sources is neither tractable nor relevant, since one would like to only extract the useful sources. Conversely, for a small number of sensors, especially smaller than the number of sources, it is again necessary to only focus on the useful signals. The main objective is to develop generic approaches able to only extract useful signals, based on simple reference signal, modeling weak properties of the useful signal.
Finally, validation and relevant modeling must be based on actual signals and problems. In this project, theoretical results and algorithms will be developed in interaction with applications in biomedical engineering (brain-computer interface, EEG, fMRI), chemical engineering, audio-visual scene analysis and hyperspectral imaging.
Max ERC Funding
2 499 390 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym ColDSIM
Project Cold gases with long-range interactions:
Non-equilibrium dynamics and complex simulations
Researcher (PI) Guido Pupillo
Host Institution (HI) CENTRE INTERNATIONAL DE RECHERCHE AUX FRONTIERES DE LA CHIMIE FONDATION
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Cold gases of electronically excited Rydberg atoms and groundstate polar molecules have generated considerable interest in cold matter physics, by introducing for the first time many-body systems with interactions which are both long-range and tunable with external fields. The overall objective of this proposal is (i) the development of theoretical ideas and tools for the understanding and control of non-equilibrium dynamics in these diverse systems and in their mixtures, including dissipative effects leading to cooling, and (ii) to analyse emerging fundamental phenomena in the classical and quantum regimes of strong interactions, leading to innovative simulations and experiments of complex classical and quantum systems. The project is divided into three parts, with strong overlap:
1) Rydberg atom dynamics: The study of complex open-system dynamics in gases of laser-driven Rydberg atoms, including the study of the effects and control of dissipation and decoherence from spontaneous emission in strongly interacting gases.
2) Cooling of complex molecules in atom-molecule mixtures: The theoretical investigation of novel ways to perform cooling towards quantum degeneracy of generic, comparatively complex molecules, beyond bialkali ones, in mixtures of groundstate molecules and of Rydberg-excited atoms.
3) Simulations of strongly interacting many-body systems at the quantum/classical crossover: Atomistic characterization of formation and dynamics of formation of strongly correlated phases with long-range interactions.
For each of these subjects, the objectives are at the cutting edge of fundamental atomic and molecular science and technology.
Summary
Cold gases of electronically excited Rydberg atoms and groundstate polar molecules have generated considerable interest in cold matter physics, by introducing for the first time many-body systems with interactions which are both long-range and tunable with external fields. The overall objective of this proposal is (i) the development of theoretical ideas and tools for the understanding and control of non-equilibrium dynamics in these diverse systems and in their mixtures, including dissipative effects leading to cooling, and (ii) to analyse emerging fundamental phenomena in the classical and quantum regimes of strong interactions, leading to innovative simulations and experiments of complex classical and quantum systems. The project is divided into three parts, with strong overlap:
1) Rydberg atom dynamics: The study of complex open-system dynamics in gases of laser-driven Rydberg atoms, including the study of the effects and control of dissipation and decoherence from spontaneous emission in strongly interacting gases.
2) Cooling of complex molecules in atom-molecule mixtures: The theoretical investigation of novel ways to perform cooling towards quantum degeneracy of generic, comparatively complex molecules, beyond bialkali ones, in mixtures of groundstate molecules and of Rydberg-excited atoms.
3) Simulations of strongly interacting many-body systems at the quantum/classical crossover: Atomistic characterization of formation and dynamics of formation of strongly correlated phases with long-range interactions.
For each of these subjects, the objectives are at the cutting edge of fundamental atomic and molecular science and technology.
Max ERC Funding
1 496 400 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym CUMTAS
Project Customized Micro Total Analysis Systems to Study Human Phase I Metabolism
Researcher (PI) Tiina Marjukka Sikanen
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Starting Grant (StG), LS9, ERC-2012-StG_20111109
Summary The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Summary
The goal of this project is to develop inexpensive, high-throughput technology to screen the thus far unexplored metabolic interactions between environmental and household chemicals and clinically relevant drugs. The main influential focus will be on human phase I metabolism (redox reactions) of common toxicants like agrochemicals and plasticizers. On the basis of their structural resemblance to pharmaceuticals and endogenous compounds, many of these chemicals are suspected to have critical effects on cytochrome P450 metabolism which is the main detoxification route of pharmaceuticals in man. However, with the current analytical instrumentation, screening of such large chemical pool would take several years, and new chemicals would be introduced faster than the old ones are screened. Thus, the main technological goal of this project is to develop novel, practically zero-cost analytical instruments that enable characterization of a compound’s metabolic profile at very high speed (<1 min/sample). This goal is achieved through miniaturization and high degree of integration of analytical instrumentation by microfabrication means, an approach often called lab(oratory)-on-a-chip. The microfabricated arrays are envisioned to incorporate all analytical key functions required (i.e., sample pretreatment, metabolic reaction, separation of the reaction products, detection) on a single chip. Thanks to the reduced dimensions, the amount of chemical waste and consumption of expensive reagents are significantly reduced. In this project, several different microfabrication techniques, from delicate cleanroom processes to extremely simple printing techniques, will be exploited to produce smart microfluidic designs and multifunctional surfaces. Towards the end of the project, more focus will be put on “printable microfluidics” which provides a truly low-cost approach for fabrication of highly customized microfluidic assays. Numerical modelling is also an integral part of the work.
Max ERC Funding
1 499 668 €
Duration
Start date: 2013-05-01, End date: 2019-02-28
Project acronym CytoBacLysis
Project Deciphering cytosolic antibacterial immunity: from triggering bacteriolysis to Aim2 inflammasome activation
Researcher (PI) Thomas Henry
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS6, ERC-2012-StG_20111109
Summary Bacteria replicating within host cells either multiply in membrane-bound compartment or escape into the host cytosol. The host cytosol has long been considered as a safe haven for bacteria. However, the host cytosol is armed with an array of innate immune receptors detecting cytosolic invasion. Furthermore, the macrophage cytosol displays a bacteriolytic activity, which is inducible by IFN. Surprisingly, the molecular mechanisms of this innate immune effector response are still largely uncharacterized. A ubiquitously expressed antimicrobial peptide, ubiquicidin has been described in the macrophage cytosol. Its relevance, its connection with macrophage-specific bacteriolytic activity and with IFN, remain to be deciphered. While cytosol-adapted bacteria are largely resistant to the bactericidal activity of the macrophage, lysis of a single bacterium triggers activation of the Aim2 inflammasome. Cytosolic bacteriolysis is thus key to orchestrate inflammasome-mediated innate immune responses. We propose here to characterize the bacteriolytic effector mechanisms, the regulation of this response and of the Aim2 inflammasome by IFN in infected macrophages. We will use two complementary bacterial models: F. tularensis, a cytosol-adapted bacterium and S. typhimurium sifA mutant, a bacterium lysed in the macrophage cytosol. We will develop three synergistic approaches:
i) the generation of novel tools to monitor cytosolic bacteriolysis
ii) hypothesis-driven investigations on the antimicrobial activity of the macrophage cytosol focusing on ubiquicidin to uncover the mechanisms of processing and targeting of this antimicrobial peptide
iii) screening of IFN-inducible genes to identify novel players involved in the cytosolic bacteriolytic activity and in inflammasome regulation.
We believe this project should reveal the innate immune effector mechanisms of the macrophage cytosol i.e. how the macrophage kills cytosolic bacteria and orchestrates further immune responses.
Summary
Bacteria replicating within host cells either multiply in membrane-bound compartment or escape into the host cytosol. The host cytosol has long been considered as a safe haven for bacteria. However, the host cytosol is armed with an array of innate immune receptors detecting cytosolic invasion. Furthermore, the macrophage cytosol displays a bacteriolytic activity, which is inducible by IFN. Surprisingly, the molecular mechanisms of this innate immune effector response are still largely uncharacterized. A ubiquitously expressed antimicrobial peptide, ubiquicidin has been described in the macrophage cytosol. Its relevance, its connection with macrophage-specific bacteriolytic activity and with IFN, remain to be deciphered. While cytosol-adapted bacteria are largely resistant to the bactericidal activity of the macrophage, lysis of a single bacterium triggers activation of the Aim2 inflammasome. Cytosolic bacteriolysis is thus key to orchestrate inflammasome-mediated innate immune responses. We propose here to characterize the bacteriolytic effector mechanisms, the regulation of this response and of the Aim2 inflammasome by IFN in infected macrophages. We will use two complementary bacterial models: F. tularensis, a cytosol-adapted bacterium and S. typhimurium sifA mutant, a bacterium lysed in the macrophage cytosol. We will develop three synergistic approaches:
i) the generation of novel tools to monitor cytosolic bacteriolysis
ii) hypothesis-driven investigations on the antimicrobial activity of the macrophage cytosol focusing on ubiquicidin to uncover the mechanisms of processing and targeting of this antimicrobial peptide
iii) screening of IFN-inducible genes to identify novel players involved in the cytosolic bacteriolytic activity and in inflammasome regulation.
We believe this project should reveal the innate immune effector mechanisms of the macrophage cytosol i.e. how the macrophage kills cytosolic bacteria and orchestrates further immune responses.
Max ERC Funding
1 404 688 €
Duration
Start date: 2012-11-01, End date: 2018-10-31