Project acronym EXPLOREMAPS
Project Combinatorial methods, from enumerative topology to random discrete structures and compact data representations
Researcher (PI) Gilles Schaeffer
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary "Our aim is to built on recent combinatorial and algorithmic progress to attack a series of deeply connected problems that have independantly surfaced in enumerative topology, statistical physics, and data compression. The relation between these problems lies in the notion of ""combinatorial map"", the natural discrete mathematical abstraction of objects with a 2-dimensional structures (like geographical maps, computer graphics' meshes, or 2d manifolds). A whole new set of properties of these maps has been uncovered in the last few years under the impulsion of the principal investigator. Rougly speaking, we have shown that classical graph exploration algorithms, when correctly applied to maps, lead to remarkable decompositions of the underlying surfaces. Our methods resort to algorithmic and enumerative combinatorics. In statistical physics, these decompositions offer an approach to the intrinsec geometry of discrete 2d quantum gravity: our method is here the first to outperform the celebrated ""topological expansion of matrix integrals"" of Brezin-Itzykson-Parisi-Zuber. Exploring its implications for the continuum limit of these random geometries is our great challenge now. From a computational geometry perspective, our approach yields the first encoding schemes with asymptotically optimal garanteed compression rates for the connectivity of triangular or polygonal meshes. These schemes improve on a long series of heuristically efficient but non optimal algorithms, and open the way to optimally compact data structures. Finally we have deep indications that the properties we have uncovered extend to the realm of ramified coverings of the sphere. Intriguing computations on the fundamental Hurwitz's numbers have been obtained using the ELSV formula, famous for its use by Okounkov et al. to rederive Kontsevich's model. We believe that further combinatorial progress here could allow to bypass the formula and obtaine an elementary explanation of these results."
Summary
"Our aim is to built on recent combinatorial and algorithmic progress to attack a series of deeply connected problems that have independantly surfaced in enumerative topology, statistical physics, and data compression. The relation between these problems lies in the notion of ""combinatorial map"", the natural discrete mathematical abstraction of objects with a 2-dimensional structures (like geographical maps, computer graphics' meshes, or 2d manifolds). A whole new set of properties of these maps has been uncovered in the last few years under the impulsion of the principal investigator. Rougly speaking, we have shown that classical graph exploration algorithms, when correctly applied to maps, lead to remarkable decompositions of the underlying surfaces. Our methods resort to algorithmic and enumerative combinatorics. In statistical physics, these decompositions offer an approach to the intrinsec geometry of discrete 2d quantum gravity: our method is here the first to outperform the celebrated ""topological expansion of matrix integrals"" of Brezin-Itzykson-Parisi-Zuber. Exploring its implications for the continuum limit of these random geometries is our great challenge now. From a computational geometry perspective, our approach yields the first encoding schemes with asymptotically optimal garanteed compression rates for the connectivity of triangular or polygonal meshes. These schemes improve on a long series of heuristically efficient but non optimal algorithms, and open the way to optimally compact data structures. Finally we have deep indications that the properties we have uncovered extend to the realm of ramified coverings of the sphere. Intriguing computations on the fundamental Hurwitz's numbers have been obtained using the ELSV formula, famous for its use by Okounkov et al. to rederive Kontsevich's model. We believe that further combinatorial progress here could allow to bypass the formula and obtaine an elementary explanation of these results."
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym EXTPRO
Project Quasi-Randomness in Extremal Combinatorics
Researcher (PI) Asaf Shapira
Host Institution (HI) TEL AVIV UNIVERSITY
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated into it deep tools from other mathematical areas, and has also found applications in other mathematical areas such as Additive Number Theory, Theoretical Computer Science, Computational Biology and Information Theory.
The PI will work on a variety of problems in Extremal Combinatorics which is one of the most active subareas within Combinatorics with spectacular recent developments. A typical problem in this area asks to minimize (or maximize) a certain parameter attached to a discrete structure given several other constrains. One of the most powerful tools used in attacking problems in this area uses the so called Structure vs Randomness phenomenon. This roughly means that any {\em deterministic} object can be partitioned into smaller quasi-random objects, that is, objects that have properties we expect to find in truly random ones. The PI has already made significant contributions in this area and our goal in this proposal is to obtain further results of this caliber by tackling some of the hardest open problems at the forefront of current research. Some of these problems are related to the celebrated Hypergraph and Arithmetic Regularity Lemmas, to Super-saturation problems in Additive Combinatorics and Graph Theory, to problems in Ramsey Theory, as well as to applications of Extremal Combinatorics to problems in Theoretical Computer Science. Another major goal of this proposal is to develop new approaches and techniques for tackling problems in Extremal Combinatorics.
The support by means of a 5-year research grant will enable the PI to further establish himself as a leading researcher in Extremal Combinatorics and to build a vibrant research group in Extremal Combinatorics.
Summary
Combinatorics is an extremely fast growing mathematical discipline. While it started as a collection of isolated problems that
were tackled using ad-hoc arguments it has since grown into a mature discipline which both incorporated into it deep tools from other mathematical areas, and has also found applications in other mathematical areas such as Additive Number Theory, Theoretical Computer Science, Computational Biology and Information Theory.
The PI will work on a variety of problems in Extremal Combinatorics which is one of the most active subareas within Combinatorics with spectacular recent developments. A typical problem in this area asks to minimize (or maximize) a certain parameter attached to a discrete structure given several other constrains. One of the most powerful tools used in attacking problems in this area uses the so called Structure vs Randomness phenomenon. This roughly means that any {\em deterministic} object can be partitioned into smaller quasi-random objects, that is, objects that have properties we expect to find in truly random ones. The PI has already made significant contributions in this area and our goal in this proposal is to obtain further results of this caliber by tackling some of the hardest open problems at the forefront of current research. Some of these problems are related to the celebrated Hypergraph and Arithmetic Regularity Lemmas, to Super-saturation problems in Additive Combinatorics and Graph Theory, to problems in Ramsey Theory, as well as to applications of Extremal Combinatorics to problems in Theoretical Computer Science. Another major goal of this proposal is to develop new approaches and techniques for tackling problems in Extremal Combinatorics.
The support by means of a 5-year research grant will enable the PI to further establish himself as a leading researcher in Extremal Combinatorics and to build a vibrant research group in Extremal Combinatorics.
Max ERC Funding
1 221 921 €
Duration
Start date: 2015-03-01, End date: 2021-02-28
Project acronym FAnFArE
Project Fourier Analysis For/And Partial Differential Equations
Researcher (PI) Frederic, Jérôme, Louis Bernicot
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary "This project aims to develop the field of Harmonic Analysis, and more precisely to study problems at the interface between Fourier Analysis and PDEs (and also some Geometry).
We are interested in two aspects of the Fourier Analysis:
(1) The Euclidean Fourier Analysis, where a deep analysis can be performed using specificities as the notion of "frequencies" (involving the Fourier transform) or the geometry of the Euclidean balls. By taking advantage of them, this proposal aims to pursue the study and bring novelties in three fashionable topics: the study of bilinear/multilinear Fourier multipliers, the development of the "space-time resonances" method in a systematic way and for some specific PDEs, and the study of nonlinear transport equations in BMO-type spaces (as Euler and Navier-Stokes equations).
(2) A Functional Fourier Analysis, which can be performed in a more general situation using the notion of "oscillation" adapted to a heat semigroup (or semigroup of operators). This second Challenge is (at the same time) independent of the first one and also very close. It is very close, due to the same point of view of Fourier Analysis involving a space decomposition and simultaneously some frequency decomposition. However they are quite independent because the main goal is to extend/develop an analysis in the more general framework given by a semigroup of operators (so without using the previous Euclidean specificities). By this way, we aim to transfer some results known in the Euclidean situation to some Riemannian manifolds, Fractals sets, bounded open set setting, ... Still having in mind some applications to the study of PDEs, such questions make also a connexion with the geometry of the ambient spaces (by its Riesz transform, Poincaré inequality, ...). I propose here to attack different problems as dispersive estimates, ""L^p""-version of De Giorgi inequalities and the study of paraproducts, all of them with a heat semigroup point of view."
Summary
"This project aims to develop the field of Harmonic Analysis, and more precisely to study problems at the interface between Fourier Analysis and PDEs (and also some Geometry).
We are interested in two aspects of the Fourier Analysis:
(1) The Euclidean Fourier Analysis, where a deep analysis can be performed using specificities as the notion of "frequencies" (involving the Fourier transform) or the geometry of the Euclidean balls. By taking advantage of them, this proposal aims to pursue the study and bring novelties in three fashionable topics: the study of bilinear/multilinear Fourier multipliers, the development of the "space-time resonances" method in a systematic way and for some specific PDEs, and the study of nonlinear transport equations in BMO-type spaces (as Euler and Navier-Stokes equations).
(2) A Functional Fourier Analysis, which can be performed in a more general situation using the notion of "oscillation" adapted to a heat semigroup (or semigroup of operators). This second Challenge is (at the same time) independent of the first one and also very close. It is very close, due to the same point of view of Fourier Analysis involving a space decomposition and simultaneously some frequency decomposition. However they are quite independent because the main goal is to extend/develop an analysis in the more general framework given by a semigroup of operators (so without using the previous Euclidean specificities). By this way, we aim to transfer some results known in the Euclidean situation to some Riemannian manifolds, Fractals sets, bounded open set setting, ... Still having in mind some applications to the study of PDEs, such questions make also a connexion with the geometry of the ambient spaces (by its Riesz transform, Poincaré inequality, ...). I propose here to attack different problems as dispersive estimates, ""L^p""-version of De Giorgi inequalities and the study of paraproducts, all of them with a heat semigroup point of view."
Max ERC Funding
940 540 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym FRACTALSANDMETRICNT
Project Fractals, algebraic dynamics and metric number theory
Researcher (PI) Michael Hochman
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size of sums and intersections of invariant sets. These conjectures are related to problems on expansion in integer bases, in Diophantine approximation, measure rigidity, analysis and equidistribution. The project focuses on the conjectures themselves and some related problems, e.g. Bernoulli convolutions, and on applications to equidistribution on tori. Our approach combines tools from ergodic theory, geometric measure theory and additive combinatorics, building on recent progress in these fields and recent partial results towards the main conjectures.
Summary
We propose to study the fractal geometry of invariant sets for endomorphisms of compact abelian groups, specifically a family of conjectures by Furstenberg on the dimensions of orbit closures under such dynamics, and on the size of sums and intersections of invariant sets. These conjectures are related to problems on expansion in integer bases, in Diophantine approximation, measure rigidity, analysis and equidistribution. The project focuses on the conjectures themselves and some related problems, e.g. Bernoulli convolutions, and on applications to equidistribution on tori. Our approach combines tools from ergodic theory, geometric measure theory and additive combinatorics, building on recent progress in these fields and recent partial results towards the main conjectures.
Max ERC Funding
1 107 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym G-Statistics
Project Foundations of Geometric Statistics and Their Application in the Life Sciences
Researcher (PI) Xavier Jean-Louis PENNEC
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Advanced Grant (AdG), PE1, ERC-2017-ADG
Summary "Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.
So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.
In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the ""unreasonable effectiveness of mathematics"" for life sciences."
Summary
"Invariance under gauge transformation groups provides the natural structure explaining the laws of physics. In life sciences, new mathematical tools are needed to estimate approximate invariance and establish general but approximate laws. Rephrasing Poincaré: a geometry cannot be more true than another, it may just be more convenient, and statisticians must find the most convenient one for their data. At the crossing of geometry and statistics, G-Statistics aims at establishing the mathematical foundations of geometric statistics and exemplifying their impact on selected applications in the life sciences.
So far, mainly Riemannian manifolds and negatively curved metric spaces have been studied. Other geometric structures like quotient spaces, stratified spaces or affine connection spaces naturally arise in applications. G-Statistics will explore ways to unify statistical estimation theories, explaining how the statistical estimations diverges from the Euclidean case in the presence of curvature, singularities, stratification. Beyond classical manifolds, particular emphasis will be put on flags of subspaces in manifolds as they appear to be natural mathematical object to encode hierarchically embedded approximation spaces.
In order to establish geometric statistics as an effective discipline, G-Statistics will propose new mathematical structures and theorems to characterize their properties. It will also implement novel generic algorithms and illustrate the impact of some of their efficient specializations on selected applications in life sciences. Surveying the manifolds of anatomical shapes and forecasting their evolution from databases of medical images is a key problem in computational anatomy requiring dimension reduction in non-linear spaces and Lie groups. By inventing radically new principled estimations methods, we aim at illustrating the power of the methodology and strengthening the ""unreasonable effectiveness of mathematics"" for life sciences."
Max ERC Funding
2 183 584 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym GADA
Project Group Actions: Interactions between Dynamical Systems and Arithmetic
Researcher (PI) Emmanuel Breuillard
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary "Our main goal is to apply the powerful analytical tools that are now emerging from areas of more ""applicable"" parts of mathematics such as ergodic theory, random walks, harmonic analysis and additive combinatorics to some longstanding open problems in more theoretical parts of mathematics such as group theory and number theory. The recent work of Green and Tao about arithmetic progressions of prime numbers, or Margulis' celebrated solution of the Oppenheim Conjecture about integer values of quadratic forms are examples of the growing interpenetration of such seemingly unrelated fields. We have in mind an explicit set of problems: a uniform Tits alternative, the equidistribution of dense subgroups, the Andre-Oort conjecture, the spectral gap conjecture, the Lehmer problem. All these questions involve group theory in various forms (discrete subgroups of Lie groups, representation theory and spectral theory, locally symmetric spaces and Shimura varieties, dynamics on homogeneous spaces of arithmetic origin, Cayley graphs of large finite groups, etc) and have also a number theoretic flavor. Their striking common feature is that each of them enjoys some intimate relationship, whether by the foreseen methods to tackle it or by its consequences, with ergodic theory on the one hand and harmonic analysis and combinatorics on the other. We believe that the new methods being currently developed in those fields will bring crucial insights to the problems at hand. This proposed research builds on previous results obtained by the author and addresses some of the most challenging open problems in the field."
Summary
"Our main goal is to apply the powerful analytical tools that are now emerging from areas of more ""applicable"" parts of mathematics such as ergodic theory, random walks, harmonic analysis and additive combinatorics to some longstanding open problems in more theoretical parts of mathematics such as group theory and number theory. The recent work of Green and Tao about arithmetic progressions of prime numbers, or Margulis' celebrated solution of the Oppenheim Conjecture about integer values of quadratic forms are examples of the growing interpenetration of such seemingly unrelated fields. We have in mind an explicit set of problems: a uniform Tits alternative, the equidistribution of dense subgroups, the Andre-Oort conjecture, the spectral gap conjecture, the Lehmer problem. All these questions involve group theory in various forms (discrete subgroups of Lie groups, representation theory and spectral theory, locally symmetric spaces and Shimura varieties, dynamics on homogeneous spaces of arithmetic origin, Cayley graphs of large finite groups, etc) and have also a number theoretic flavor. Their striking common feature is that each of them enjoys some intimate relationship, whether by the foreseen methods to tackle it or by its consequences, with ergodic theory on the one hand and harmonic analysis and combinatorics on the other. We believe that the new methods being currently developed in those fields will bring crucial insights to the problems at hand. This proposed research builds on previous results obtained by the author and addresses some of the most challenging open problems in the field."
Max ERC Funding
750 000 €
Duration
Start date: 2008-12-01, End date: 2013-11-30
Project acronym GAN
Project Groups, Actions and von Neumann algebras
Researcher (PI) Cyril Houdayer
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2014-STG
Summary This research project focuses on the structure, classification and rigidity of three closely related objects: group actions on measure spaces, orbit equivalence relations and von Neumann algebras. Over the last 15 years, the study of interactions between these three topics has led to a process of mutual enrichment, providing both striking theorems and outstanding conjectures.
Some fundamental questions such as Connes' rigidity conjecture, the structure of von Neumann algebras associated with higher rank lattices, or the fine classification of factors of type III still remain untouched. The general aim of the project is to tackle these problems and other related questions by developing a further analysis and understanding of the interplay between von Neumann algebra theory on the one hand, as well as ergodic and group theory on the other hand. To do so, I will use and combine several tools and develop new ones arising from Popa's Deformation/Rigidity theory, Lie group theory (lattices, boundaries), topological and geometric group theory and representation group theory (amenability, property (T)). More specifically, the main directions of my research project are:
1) The structure of the von Neumann algebras arising from Voiculescu's Free Probability theory: Shlyakhtenko's free Araki-Woods factors, amalgamated free product von Neumann algebras and the free group factors.
2) The structure and the classification of the von Neumann algebras and the measured equivalence relations arising from lattices in higher rank semisimple connected Lie groups.
3) The measure equivalence rigidity of the Baumslag-Solitar groups and several other classes of discrete groups acting on trees.
Summary
This research project focuses on the structure, classification and rigidity of three closely related objects: group actions on measure spaces, orbit equivalence relations and von Neumann algebras. Over the last 15 years, the study of interactions between these three topics has led to a process of mutual enrichment, providing both striking theorems and outstanding conjectures.
Some fundamental questions such as Connes' rigidity conjecture, the structure of von Neumann algebras associated with higher rank lattices, or the fine classification of factors of type III still remain untouched. The general aim of the project is to tackle these problems and other related questions by developing a further analysis and understanding of the interplay between von Neumann algebra theory on the one hand, as well as ergodic and group theory on the other hand. To do so, I will use and combine several tools and develop new ones arising from Popa's Deformation/Rigidity theory, Lie group theory (lattices, boundaries), topological and geometric group theory and representation group theory (amenability, property (T)). More specifically, the main directions of my research project are:
1) The structure of the von Neumann algebras arising from Voiculescu's Free Probability theory: Shlyakhtenko's free Araki-Woods factors, amalgamated free product von Neumann algebras and the free group factors.
2) The structure and the classification of the von Neumann algebras and the measured equivalence relations arising from lattices in higher rank semisimple connected Lie groups.
3) The measure equivalence rigidity of the Baumslag-Solitar groups and several other classes of discrete groups acting on trees.
Max ERC Funding
876 750 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym GATIPOR
Project Guaranteed fully adaptive algorithms with tailored inexact solvers for complex porous media flows
Researcher (PI) Martin Vohralik
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Consolidator Grant (CoG), PE1, ERC-2014-CoG
Summary Efficient use of computational resources with a reliable outcome is a definite target in numerical simulations of partial differential equations (PDEs). Although this has been an important subject of numerical analysis and scientific computing for decades, still, surprisingly, often more than 90% of the CPU time in numerical simulations is literally wasted and the accuracy of the final outcome is not guaranteed. The reason is that addressing this complex issue rigorously is extremely challenging, as it stems from linking several rather disconnected domains like modeling, analysis of PDEs, numerical analysis, numerical linear algebra, and scientific computing. The goal of this project is to design novel inexact algebraic and linearization solvers, with each step being adaptively steered by optimal (guaranteed and robust) a posteriori error estimates, thus online interconnecting all parts of the numerical simulation of complex environmental porous media flows. The key novel ingredients will be multilevel algebraic solvers, tailored to porous media simulations, with problem- and discretization-dependent restriction, prolongation, and smoothing, yielding mass balance on all grid levels, accompanied by local adaptive stopping criteria. We shall theoretically prove the convergence of the new algorithms and justify their optimality, with in particular guaranteed (without any unknown constant) error reduction and overall computational load. Implementation into established numerical simulation codes and assessment on renowned academic and industrial benchmarks will consolidate the theoretical results. As a final outcome, the total simulation error will be certified and current computational burden cut by orders of magnitude. This would represent a cardinal technological advance both theoretically as well as practically in urgent environmental applications, namely the nuclear waste storage and the geological sequestration of CO2.
Summary
Efficient use of computational resources with a reliable outcome is a definite target in numerical simulations of partial differential equations (PDEs). Although this has been an important subject of numerical analysis and scientific computing for decades, still, surprisingly, often more than 90% of the CPU time in numerical simulations is literally wasted and the accuracy of the final outcome is not guaranteed. The reason is that addressing this complex issue rigorously is extremely challenging, as it stems from linking several rather disconnected domains like modeling, analysis of PDEs, numerical analysis, numerical linear algebra, and scientific computing. The goal of this project is to design novel inexact algebraic and linearization solvers, with each step being adaptively steered by optimal (guaranteed and robust) a posteriori error estimates, thus online interconnecting all parts of the numerical simulation of complex environmental porous media flows. The key novel ingredients will be multilevel algebraic solvers, tailored to porous media simulations, with problem- and discretization-dependent restriction, prolongation, and smoothing, yielding mass balance on all grid levels, accompanied by local adaptive stopping criteria. We shall theoretically prove the convergence of the new algorithms and justify their optimality, with in particular guaranteed (without any unknown constant) error reduction and overall computational load. Implementation into established numerical simulation codes and assessment on renowned academic and industrial benchmarks will consolidate the theoretical results. As a final outcome, the total simulation error will be certified and current computational burden cut by orders of magnitude. This would represent a cardinal technological advance both theoretically as well as practically in urgent environmental applications, namely the nuclear waste storage and the geological sequestration of CO2.
Max ERC Funding
1 283 088 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym GECOMETHODS
Project Geometric control methods for heat and Schroedinger equations
Researcher (PI) Ugo Boscain
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary "The aim of this project of 5 years is to create a research group on geometric control methods in PDEs with the arrival of the PI at the CNRS Laboratoire CMAP (Centre de Mathematiques Appliquees) of the Ecole Polytechnique in Paris (in January 09). With the ERC-Starting Grant, the PI plans to hire 4 post-doc fellows, 2 PhD students and also to organize advanced research schools and workshops. One of the main purpose of this project is to facilitate the collaboration with my research group which is quite spread across France and Italy. The PI plans to develop a research group studying certain PDEs for which geometric control techniques open new horizons. More precisely the PI plans to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation. In the last years the PI has developed a net of high level international collaborations and, together with his collaborators and PhD students, has obtained many important results via a mixed combination of geometric methods in control (Hamiltonian methods, Lie group techniques, conjugate point theory, singularity theory etc.) and noncommutative Fourier analysis. This has allowed to solve open problems in the field, e.g., the definition of an intrinsic hypoelliptic Laplacian, the explicit construction of the hypoelliptic heat kernel for the most important 3D Lie groups, and the proof of the controllability of the bilinear Schroedinger equation with discrete spectrum, under some ""generic"" assumptions. Many more related questions are still open and the scope of this project is to tackle them. All subjects studied in this project have real applications: the problem of controllability of the Schroedinger equation has direct applications in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in models of human vision."
Summary
"The aim of this project of 5 years is to create a research group on geometric control methods in PDEs with the arrival of the PI at the CNRS Laboratoire CMAP (Centre de Mathematiques Appliquees) of the Ecole Polytechnique in Paris (in January 09). With the ERC-Starting Grant, the PI plans to hire 4 post-doc fellows, 2 PhD students and also to organize advanced research schools and workshops. One of the main purpose of this project is to facilitate the collaboration with my research group which is quite spread across France and Italy. The PI plans to develop a research group studying certain PDEs for which geometric control techniques open new horizons. More precisely the PI plans to exploit the relation between the sub-Riemannian distance and the properties of the kernel of the corresponding hypoelliptic heat equation and to study controllability properties of the Schroedinger equation. In the last years the PI has developed a net of high level international collaborations and, together with his collaborators and PhD students, has obtained many important results via a mixed combination of geometric methods in control (Hamiltonian methods, Lie group techniques, conjugate point theory, singularity theory etc.) and noncommutative Fourier analysis. This has allowed to solve open problems in the field, e.g., the definition of an intrinsic hypoelliptic Laplacian, the explicit construction of the hypoelliptic heat kernel for the most important 3D Lie groups, and the proof of the controllability of the bilinear Schroedinger equation with discrete spectrum, under some ""generic"" assumptions. Many more related questions are still open and the scope of this project is to tackle them. All subjects studied in this project have real applications: the problem of controllability of the Schroedinger equation has direct applications in Nuclear Magnetic Resonance; the problem of nonisotropic diffusion has applications in models of human vision."
Max ERC Funding
785 000 €
Duration
Start date: 2010-05-01, End date: 2016-04-30
Project acronym GELANDERINDGEOMRGD
Project Independence of Group Elements and Geometric Rigidity
Researcher (PI) Tsachik Gelander
Host Institution (HI) THE HEBREW UNIVERSITY OF JERUSALEM
Call Details Starting Grant (StG), PE1, ERC-2007-StG
Summary The proposed research contains two main directions in group theory and geometry: Independence of Group Elements and Geometric Rigidity. The first consists of problems related to the existence of free subgroups, uniform and effective ways of producing such, and analogous questions for finite groups where the analog of independent elements are elements for which the Cayley graph has a large girth, or non-small expanding constant. This line of research began almost a century ago and contains many important works including works of Hausdorff, Banach and Tarski on paradoxical decompositions, works of Margulis, Sullivan and Drinfeld on the Banach-Ruziewicz problem, the classical Tits Alternative, Margulis-Soifer result on maximal subgroups, the recent works of Eskin-Mozes-Oh and Bourgain-Gamburd, etc. Among the famous questions is Milnor's problem on the exponential verses polynomial growth for f.p. groups, originally stated for f.g. groups but reformulated after Grigorchuk's counterexample. Related works of the PI includes a joint work with Breuillard on the topological Tits alternative, where several well known conjectures were solved, e.g. the foliated version of Milnor's problem conjectured by Carriere, and on the uniform Tits alternative which significantly improved Tits' and EMO theorems. A joint work with Glasner on primitive groups where in particular a conjecture of Higman and Neumann was solved. A paper on the deformation varieties where a conjecture of Margulis and Soifer and a conjecture of Goldman were proved. The second involves extensions of Margulis' and Mostow's rigidity theorems to actions of lattices in general topological groups on metric spaces, and extensions of Kazhdan's property (T) for group actions on Banach and metric spaces. This area is very active today. Related work of the PI includes his joint work with Karlsson and Margulis on generalized harmonic maps, and his joint work with Bader, Furman and Monod on actions on Banach spaces.
Summary
The proposed research contains two main directions in group theory and geometry: Independence of Group Elements and Geometric Rigidity. The first consists of problems related to the existence of free subgroups, uniform and effective ways of producing such, and analogous questions for finite groups where the analog of independent elements are elements for which the Cayley graph has a large girth, or non-small expanding constant. This line of research began almost a century ago and contains many important works including works of Hausdorff, Banach and Tarski on paradoxical decompositions, works of Margulis, Sullivan and Drinfeld on the Banach-Ruziewicz problem, the classical Tits Alternative, Margulis-Soifer result on maximal subgroups, the recent works of Eskin-Mozes-Oh and Bourgain-Gamburd, etc. Among the famous questions is Milnor's problem on the exponential verses polynomial growth for f.p. groups, originally stated for f.g. groups but reformulated after Grigorchuk's counterexample. Related works of the PI includes a joint work with Breuillard on the topological Tits alternative, where several well known conjectures were solved, e.g. the foliated version of Milnor's problem conjectured by Carriere, and on the uniform Tits alternative which significantly improved Tits' and EMO theorems. A joint work with Glasner on primitive groups where in particular a conjecture of Higman and Neumann was solved. A paper on the deformation varieties where a conjecture of Margulis and Soifer and a conjecture of Goldman were proved. The second involves extensions of Margulis' and Mostow's rigidity theorems to actions of lattices in general topological groups on metric spaces, and extensions of Kazhdan's property (T) for group actions on Banach and metric spaces. This area is very active today. Related work of the PI includes his joint work with Karlsson and Margulis on generalized harmonic maps, and his joint work with Bader, Furman and Monod on actions on Banach spaces.
Max ERC Funding
750 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31