Project acronym AEROCAT
Project Non-ordered nanoparticle superstructures – aerogels as efficient (electro-)catalysts
Researcher (PI) Alexander Eychmüller
Host Institution (HI) TECHNISCHE UNIVERSITAET DRESDEN
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary "AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Summary
"AEROCAT aims at the elucidation of the potential of nanoparticle derived aerogels in catalytic applications. The materials will be produced from a variety of nanoparticles available in colloidal solutions, amongst which are metals and metal oxides. The evolving aerogels are extremely light, highly porous solids and have been demonstrated to exhibit in many cases the important properties of the nanosized objects they consist of instead of simply those of the respective bulk solids. The resulting aerogel materials will be characterized with respect to their morphology and composition and their resulting (electro-)catalytic properties examined in the light of the inherent electronic nature of the nanosized constituents. Using the knowledge gained within the project the aerogel materials will be further re-processed in order to exploit their full potential relevant to catalysis and electrocatalysis.
From the vast variety of possible applications of nanoparticle-based hydro- and aerogels like thermoelectrics, LEDs, pollutant clearance, sensorics and others we choose our strictly focused approach
(i) due to the paramount importance of catalysis for the Chemical Industry,
(ii) because we have successfully studied the Ethanol electrooxidation on a Pd-nanoparticle aerogel,
(iii) we have patented on the oxygen reduction reaction in fuel cells with bimetallic aerogels,
(iv) and we gained first and extremely promising results on the semi-hydrogenation of Acetylene on a mixed Pd/ZnO-nanoparticle aerogel.
With this we are on the forefront of a research field which impact might not be overestimated. We should quickly explore its potentials and transfer on a short track the knowledge gained into pre-industrial testing."
Max ERC Funding
2 194 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym APHOTOREACTOR
Project Entirely Self-organized: Arrayed Single-Particle-in-a-Cavity Reactors for Highly Efficient and Selective Catalytic/Photocatalytic Energy Conversion and Solar Light Reaction Engineering
Researcher (PI) Patrik Schmuki
Host Institution (HI) FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary The proposal is built on the core idea to use an ensemble of multiple level self-organization processes to create a next generation photocatalytic platform that provides unprecedented property and reactivity control. As a main output, the project will yield a novel highly precise combined catalyst/photocatalyst assembly to: 1) provide a massive step ahead in photocatalytic applications such as direct solar hydrogen generation, pollution degradation (incl. CO2 decomposition), N2 fixation, or photocatalytic organic synthesis. It will drastically enhance efficiency and selectivity of photocatalytic reactions, and enable a high number of organic synthetic reactions to be carried out economically (and ecologically) via combined catalytic/photocatalytic pathways. Even more, it will establish an entirely new generation of “100% depoisoning”, anti-aggregation catalysts with substantially enhanced catalyst life-time. For this, a series of self-assembly processes on the mesoscale will be used to create highly uniform arrays of single-catalyst-particle-in-a-single-TiO2-cavity; target is a 100% reliable placement of a single <10 nm particle in a 10 nm cavity. Thus catalytic features of, for example Pt nanoparticles, can ideally interact with the photocatalytic properties of a TiO2 cavity. The cavity will be optimized for optical and electronic properties by doping and band-gap engineering; the geometry will be tuned to the range of a few nm.. This nanoscopic design yields to a radical change in the controllability of length and time-scales (reactant, charge carrier and ionic transport in the substrate) in combined photocatalytic/catalytic reactions. It is of key importance that all nanoscale assembly principles used in this work are scalable and allow to create square meters of nanoscopically ordered catalyst surfaces. We target to demonstrate the feasibility of the implementation of the nanoscale principles in a prototype macroscopic reactor.
Summary
The proposal is built on the core idea to use an ensemble of multiple level self-organization processes to create a next generation photocatalytic platform that provides unprecedented property and reactivity control. As a main output, the project will yield a novel highly precise combined catalyst/photocatalyst assembly to: 1) provide a massive step ahead in photocatalytic applications such as direct solar hydrogen generation, pollution degradation (incl. CO2 decomposition), N2 fixation, or photocatalytic organic synthesis. It will drastically enhance efficiency and selectivity of photocatalytic reactions, and enable a high number of organic synthetic reactions to be carried out economically (and ecologically) via combined catalytic/photocatalytic pathways. Even more, it will establish an entirely new generation of “100% depoisoning”, anti-aggregation catalysts with substantially enhanced catalyst life-time. For this, a series of self-assembly processes on the mesoscale will be used to create highly uniform arrays of single-catalyst-particle-in-a-single-TiO2-cavity; target is a 100% reliable placement of a single <10 nm particle in a 10 nm cavity. Thus catalytic features of, for example Pt nanoparticles, can ideally interact with the photocatalytic properties of a TiO2 cavity. The cavity will be optimized for optical and electronic properties by doping and band-gap engineering; the geometry will be tuned to the range of a few nm.. This nanoscopic design yields to a radical change in the controllability of length and time-scales (reactant, charge carrier and ionic transport in the substrate) in combined photocatalytic/catalytic reactions. It is of key importance that all nanoscale assembly principles used in this work are scalable and allow to create square meters of nanoscopically ordered catalyst surfaces. We target to demonstrate the feasibility of the implementation of the nanoscale principles in a prototype macroscopic reactor.
Max ERC Funding
2 427 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ARYLATOR
Project New Catalytic Reactions and Exchange Pathways: Delivering Versatile and Reliable Arylation
Researcher (PI) Guy Charles Lloyd-Jones
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Summary
This proposal details the mechanism-based discovery of ground-breaking new catalyst systems for a broad range of arylation processes that will be of immediate and long-lasting utility to the pharmaceutical, agrochemical, and materials chemistry industries. These industries have become highly dependent on coupling technologies employing homogeneous late transition metal catalysis and this reliance will grow further, particularly if the substrate scope can be broadened, the economics, in terms of reagents and catalyst, made more favourable, the reliability at scale-up improved, and the generation of side-products, of particular importance for optical and electronic properties of materials, minimized or eliminated.
This proposal addresses these issues by conducting a detailed and comprehensive mechanistic investigation of direct arylation, so that a substantial expansion of the reaction scope can be achieved. At present, the regioselectivity can be very high, however catalyst turnover rates are moderate, and the arene is required to be in a fairly narrow window of activity. Specific aspects to be addressed in terms of mechanistic study are: catalyst speciation and pathways for deactivation; pathways for homocoupling; influence of anions and dummy ligands; protodemetalloidation pathways. Areas proposed for mechanism-informed development are: expansion of metalloid tolerance; expansion of arene scope; use of traceless activators and directors, new couplings via ligand exchange, the evolution of simpler / cheaper and more selective / active catalysts; expansion to oxidative double arylations (Ar-H + Ar’-H) with control, and without resort to super-stoichiometric bias.
The long-term legacy of these studies will be detailed insight for current and emerging systems, as well as readily extrapolated information for the design of new, more efficient catalyst systems in academia, and their scaleable application in industry
Max ERC Funding
2 114 223 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CAUSCOG
Project Tool Use As A Tool For Understanding Causal Cognition In Humans And Corvids
Researcher (PI) Nicola Susan Clayton
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Our ability to understand causality is at the very core of modern civilization. We see potential antecedents of this understanding in some non-human animals, notably apes and corvids. To date, behaviour thought to be indicative of causal understanding, particularly tool-use, has been mainly described as a phenomenon rather than studied as a mechanism and thus suffers from the lack of an experimentally-tested theoretical framework and deconstructive analysis. This significantly constrains our progress in answering key questions such as: (1) how do humans understand the physical world and solve problems? (2) what other ways of understanding causality and problem solving has evolution produced? (3) what selective pressures lead to the evolution of causal cognition? Each of these questions constitutes an area where there exists enormous potential to advance cognitive science. The overarching aim is to create a coherent, experimentally-tested, theoretical framework of the cognitive mechanisms underlying causal knowledge in corvids and humans, both young and adult. The advantage of our approach is that we will study two types of mind that have very different neural machineries and investigate the similarities and differences in their cognitive processes. We will create a sufficient level of abstraction to develop a deep theory of cognition, something that would not be possible by studying only a single species and its close evolutionary relatives. One of the most exciting aspects is that we will begin to map the ‘universal mind’ (i.e. the cognitive mechanisms that are repeatedly created by convergent evolution) to provide a quantum leap in our understanding of cognition. Finally, by discovering evolved biases in children’s learning and reasoning mechanisms we will pave the way for new teaching methods that boost learning in the classroom by appealing to the way children naturally understand the world."
Summary
"Our ability to understand causality is at the very core of modern civilization. We see potential antecedents of this understanding in some non-human animals, notably apes and corvids. To date, behaviour thought to be indicative of causal understanding, particularly tool-use, has been mainly described as a phenomenon rather than studied as a mechanism and thus suffers from the lack of an experimentally-tested theoretical framework and deconstructive analysis. This significantly constrains our progress in answering key questions such as: (1) how do humans understand the physical world and solve problems? (2) what other ways of understanding causality and problem solving has evolution produced? (3) what selective pressures lead to the evolution of causal cognition? Each of these questions constitutes an area where there exists enormous potential to advance cognitive science. The overarching aim is to create a coherent, experimentally-tested, theoretical framework of the cognitive mechanisms underlying causal knowledge in corvids and humans, both young and adult. The advantage of our approach is that we will study two types of mind that have very different neural machineries and investigate the similarities and differences in their cognitive processes. We will create a sufficient level of abstraction to develop a deep theory of cognition, something that would not be possible by studying only a single species and its close evolutionary relatives. One of the most exciting aspects is that we will begin to map the ‘universal mind’ (i.e. the cognitive mechanisms that are repeatedly created by convergent evolution) to provide a quantum leap in our understanding of cognition. Finally, by discovering evolved biases in children’s learning and reasoning mechanisms we will pave the way for new teaching methods that boost learning in the classroom by appealing to the way children naturally understand the world."
Max ERC Funding
2 164 833 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CDAC
Project "The role of consciousness in adaptive behavior: A combined empirical, computational and robot based approach"
Researcher (PI) Paulus Franciscus Maria Joseph Verschure
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary "Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Summary
"Understanding the nature of consciousness is one of the grand outstanding scientific challenges and two of its features stand out: consciousness is defined as the construction of one coherent scene but this scene is experienced with a delay relative to the action of the agent and not necessarily the cause of actions and thoughts. Did evolution render solutions to the challenge of survival that includes epiphenomenal processes? The Conscious Distributed Adaptive Control (CDAC) project aims at resolving this paradox by using a multi-disciplinary approach to show the functional role of consciousness in adaptive behaviour, to identify its underlying neuronal principles and to construct a neuromorphic robot based real-time conscious architecture. CDAC proposes that the shift from surviving in a physical world to one that is dominated by intentional agents requires radically different control architectures combining parallel and distributed control loops to assure real-time operation together with a second level of control that assures coherence through sequential coherent representation of self and the task domain, i.e. consciousness. This conscious scene is driving dedicated credit assignment and planning beyond the immediately given information. CDAC advances a comprehensive framework progressing beyond the state of the art and will be realized using system level models of a conscious architecture, detailed computational studies of its underlying neuronal substrate focusing, empirical validation with a humanoid robot and stroke patients and the advancement of beyond state of the art tools appropriate to the complexity of its objectives. The CDAC project directly addresses one of the main outstanding questions in science: the function and genesis of consciousness and will advance our understanding of mind and brain, provide radically new neurorehabilitation technologies and contribute to realizing a new generation of robots with advanced social competence."
Max ERC Funding
2 469 268 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym CMetC
Project Selective Carbon-Carbon Bond Activation: A Wellspring of Untapped Reactivity
Researcher (PI) Ilan Marek
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. Most –if not all- of the efforts of organic chemists were directed to the development of creative strategies to built carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. But is the creation of new bonds the only approach that organic chemistry should follow? Could we design the synthesis of challenging molecular skeleton no more through the construction of carbon-carbon bonds but rather through selective cleavage of carbon-carbon bonds (C-C bond activation)? The goal of this work is to develop powerful synthetic approaches for the selective C-C bond activation and demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo- and even enantiomerically enriched preparation of adducts despite that C-C single bonds belong among the least reactive functional groups in chemistry. The realization of this synthetic potential requires the ability to functionalize selectively one C-C bond in compounds containing many such bonds and an array of functional groups. This site selective C-C bond activation is one of the greatest challenges that must be met to be used widely in complex-molecular synthesis. To emphasize the practicality of C-C bond activation, we will prepare in a single-pot operation challenging molecular framework possessing various stereogenic centers from very simple starting materials through selective C-C bond activation. Ideally, alkenes will be in-situ transformed into alkanes that will subsequently undergo the C-C activation even in the presence of functional group. This work will lead to ground-breaking advances when non-strained cycloalkanes (cyclopentane, cyclohexane) will undergo this smooth C-C bond activation with friendly and non toxic organometallic species.
Summary
The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. Most –if not all- of the efforts of organic chemists were directed to the development of creative strategies to built carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. But is the creation of new bonds the only approach that organic chemistry should follow? Could we design the synthesis of challenging molecular skeleton no more through the construction of carbon-carbon bonds but rather through selective cleavage of carbon-carbon bonds (C-C bond activation)? The goal of this work is to develop powerful synthetic approaches for the selective C-C bond activation and demonstrate that it has the potential to be a general principle in organic synthesis for the regio-, diastereo- and even enantiomerically enriched preparation of adducts despite that C-C single bonds belong among the least reactive functional groups in chemistry. The realization of this synthetic potential requires the ability to functionalize selectively one C-C bond in compounds containing many such bonds and an array of functional groups. This site selective C-C bond activation is one of the greatest challenges that must be met to be used widely in complex-molecular synthesis. To emphasize the practicality of C-C bond activation, we will prepare in a single-pot operation challenging molecular framework possessing various stereogenic centers from very simple starting materials through selective C-C bond activation. Ideally, alkenes will be in-situ transformed into alkanes that will subsequently undergo the C-C activation even in the presence of functional group. This work will lead to ground-breaking advances when non-strained cycloalkanes (cyclopentane, cyclohexane) will undergo this smooth C-C bond activation with friendly and non toxic organometallic species.
Max ERC Funding
2 367 495 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym Cortic_al_gorithms
Project Cortical algorithms for perceptual grouping
Researcher (PI) Pieter Roelf Roelfsema
Host Institution (HI) KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN - KNAW
Call Details Advanced Grant (AdG), SH4, ERC-2013-ADG
Summary Why do we perceive objects? Visual perception starts with localized filters that subdivide the image into fragments that undergo separate analyses. Our visual system has to reconstruct the objects that surround us. It has to bind image fragments of the same object and to segregate them from other objects and the background. The standard view in psychology is that perceptual grouping is achieved by a parallel, pre-attentive process that relies on Gestalt grouping cues. My work has started to challenge this view by demonstrating that the visual cortex also implements a serial, attention-demanding algorithm for perceptual grouping. This grouping process may represent the first serial brain algorithm that can be understood at the psychological, neurophysiological and computational level. The present proposal therefore has the potential to revolutionize our view of visual cognition.
Understanding feature binding would represent a breakthrough in cognitive neuroscience. Different brain areas represent distinct visual features. How is activity in these areas integrated? We propose that perceptual grouping relies on two complementary processes, “base-grouping” and “incremental grouping”. We hypothesize that base-grouping is pre-attentive and relies on feed-forward connections from lower to higher areas that activate neurons and determine their stimulus selectivity. In contrast, we propose that incremental grouping relies on feedback and horizontal connections, which propagate enhanced neuronal activity to highlight all the features that belong to the same perceptual object. The present proposal will determine the role of attention in feature binding, the interactions between brain areas for grouping with fMRI in humans and with electrophysiology in non-human primates to reveal the algorithms for perceptual grouping as they are implemented in our brains.
Summary
Why do we perceive objects? Visual perception starts with localized filters that subdivide the image into fragments that undergo separate analyses. Our visual system has to reconstruct the objects that surround us. It has to bind image fragments of the same object and to segregate them from other objects and the background. The standard view in psychology is that perceptual grouping is achieved by a parallel, pre-attentive process that relies on Gestalt grouping cues. My work has started to challenge this view by demonstrating that the visual cortex also implements a serial, attention-demanding algorithm for perceptual grouping. This grouping process may represent the first serial brain algorithm that can be understood at the psychological, neurophysiological and computational level. The present proposal therefore has the potential to revolutionize our view of visual cognition.
Understanding feature binding would represent a breakthrough in cognitive neuroscience. Different brain areas represent distinct visual features. How is activity in these areas integrated? We propose that perceptual grouping relies on two complementary processes, “base-grouping” and “incremental grouping”. We hypothesize that base-grouping is pre-attentive and relies on feed-forward connections from lower to higher areas that activate neurons and determine their stimulus selectivity. In contrast, we propose that incremental grouping relies on feedback and horizontal connections, which propagate enhanced neuronal activity to highlight all the features that belong to the same perceptual object. The present proposal will determine the role of attention in feature binding, the interactions between brain areas for grouping with fMRI in humans and with electrophysiology in non-human primates to reveal the algorithms for perceptual grouping as they are implemented in our brains.
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym DIGMEDTEXT
Project Online Humanities Scholarship: A Digital Medical Library based on Ancient Texts
Researcher (PI) Isabella Andorlini
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PARMA
Call Details Advanced Grant (AdG), SH5, ERC-2013-ADG
Summary "The project aims at providing electronic editions of ancient medical sources including texts, translations, commentary, metadata, and images of papyri, ostraca, and tablets. Greek medical papyri and related artifacts recovered in Egypt are a veritable treasure trove of information on crucial and otherwise poorly attested phases in the development of ancient Greek medicine, its penetration into regions of the Mediterranean world and its transformation through interaction with local medical traditions — a medicine that Romans spread throughout western Europe. The interdisciplinary approach makes possible cooperative interaction among classicists, information technicians, ancient historians, and especially historians of medicine. The goal is to make both texts and metadata accessible via a single interface and to publish texts online, combining philological rigour with technological flexibility, bibliographic control, and a critical apparatus for each text. Openness and dynamism will characterise our searchable database: it is not to be a synthesis of fixed data, but rather a constantly changing repertory of sources monitored by the scholarly community and maintained by those who wish to participate at a professional level. It will extend the Duke Data Bank, taking the latter in new directions by uniting documentary and literary papyri into a common technological framework — SoSOL within Digital Papyrology. The central feature is interaction by the worldwide community of coopted participants manipulating electronic means to produce new editions of previously unknown literary and paraliterary texts of medical content, as well as to improve existing editions. The Medical Library will share space with a dictionary of technical terms attested in the papyri that likewise survive into modern scientific discourse. The entire community of papyrologists, ancient historians, historians of science, philologists, and digital humanists will share in the results."
Summary
"The project aims at providing electronic editions of ancient medical sources including texts, translations, commentary, metadata, and images of papyri, ostraca, and tablets. Greek medical papyri and related artifacts recovered in Egypt are a veritable treasure trove of information on crucial and otherwise poorly attested phases in the development of ancient Greek medicine, its penetration into regions of the Mediterranean world and its transformation through interaction with local medical traditions — a medicine that Romans spread throughout western Europe. The interdisciplinary approach makes possible cooperative interaction among classicists, information technicians, ancient historians, and especially historians of medicine. The goal is to make both texts and metadata accessible via a single interface and to publish texts online, combining philological rigour with technological flexibility, bibliographic control, and a critical apparatus for each text. Openness and dynamism will characterise our searchable database: it is not to be a synthesis of fixed data, but rather a constantly changing repertory of sources monitored by the scholarly community and maintained by those who wish to participate at a professional level. It will extend the Duke Data Bank, taking the latter in new directions by uniting documentary and literary papyri into a common technological framework — SoSOL within Digital Papyrology. The central feature is interaction by the worldwide community of coopted participants manipulating electronic means to produce new editions of previously unknown literary and paraliterary texts of medical content, as well as to improve existing editions. The Medical Library will share space with a dictionary of technical terms attested in the papyri that likewise survive into modern scientific discourse. The entire community of papyrologists, ancient historians, historians of science, philologists, and digital humanists will share in the results."
Max ERC Funding
654 836 €
Duration
Start date: 2014-01-01, End date: 2016-12-31
Project acronym DISEASES
Project The Diseases of Modern Life: Nineteenth-Century Perspectives
Researcher (PI) Sally Shuttleworth
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), SH5, ERC-2013-ADG
Summary "In our current ‘Information Age’ we suffer as never before, it is claimed, from the stresses of an overload of information, and the speed of global networks. The Victorians diagnosed similar problems in the nineteenth century. The medic James Crichton Browne spoke in 1860 of the ‘velocity of thought and action’ now required, and of the stresses imposed on the brain forced to process in a month more information ‘than was required of our grandfathers in the course of a lifetime’. This project will explore the phenomena of stress and overload, and other disorders associated in the nineteenth century with the problems of modernity, as expressed in the literature, science and medicine of the period, tracking the circulation of ideas across these diverse areas. Taking its framework from Diseases of Modern Life (1876) by the medical reformer, Benjamin Ward Richardson, it will explore ‘diseases from worry and mental strain’, as experienced in the professions, ‘lifestyle’ diseases such as the abuse of alcohol and narcotics, and also diseases from environmental pollution. This study will return to the holistic, integrative vision of the Victorians, as expressed in the science and in the great novels of the period, exploring the connections drawn between physiological, psychological and social health, or disease. Particular areas of focus will be: diseases of finance and speculation; diseases associated with particular professions; alcohol and drug addiction amidst the middle classes; travel for health; education and over-pressure in the classroom; the development of phobias and nervous disorders; and the imaginative construction of utopias and dystopias, in relation to health and disease. In its depth and range the project will take scholarship into radically new ground, breaking through the compartmentalization of psychiatric, environmental or literary history, and offering new ways of contextualising the problems of modernity facing us in the twenty-first century."
Summary
"In our current ‘Information Age’ we suffer as never before, it is claimed, from the stresses of an overload of information, and the speed of global networks. The Victorians diagnosed similar problems in the nineteenth century. The medic James Crichton Browne spoke in 1860 of the ‘velocity of thought and action’ now required, and of the stresses imposed on the brain forced to process in a month more information ‘than was required of our grandfathers in the course of a lifetime’. This project will explore the phenomena of stress and overload, and other disorders associated in the nineteenth century with the problems of modernity, as expressed in the literature, science and medicine of the period, tracking the circulation of ideas across these diverse areas. Taking its framework from Diseases of Modern Life (1876) by the medical reformer, Benjamin Ward Richardson, it will explore ‘diseases from worry and mental strain’, as experienced in the professions, ‘lifestyle’ diseases such as the abuse of alcohol and narcotics, and also diseases from environmental pollution. This study will return to the holistic, integrative vision of the Victorians, as expressed in the science and in the great novels of the period, exploring the connections drawn between physiological, psychological and social health, or disease. Particular areas of focus will be: diseases of finance and speculation; diseases associated with particular professions; alcohol and drug addiction amidst the middle classes; travel for health; education and over-pressure in the classroom; the development of phobias and nervous disorders; and the imaginative construction of utopias and dystopias, in relation to health and disease. In its depth and range the project will take scholarship into radically new ground, breaking through the compartmentalization of psychiatric, environmental or literary history, and offering new ways of contextualising the problems of modernity facing us in the twenty-first century."
Max ERC Funding
2 362 659 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Disorder Control
Project Tuning Disorder in Chalcogenides
to realize Advanced Functional Devices
Researcher (PI) Matthias Wuttig
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Advanced Grant (AdG), PE5, ERC-2013-ADG
Summary Better performance of future computers and communication equipment requires substantially higher speeds of switching devices at lower energy consumption. Those requirements can only be achieved by substantial improvement of the transport properties of the materials employed. The transport of charge and heat is strongly influenced by disorder. In recent years we have found a unique class of crystalline materials which combines an exceptionally high, yet tuneable degree of disorder with remarkable transport properties. This class includes the best phase change materials, superconductors with an unconventional coupling mechanism, good thermoelectrics, as well as known topological insulators. For these different phenomena disorder is either very beneficial or – if unconditioned - rather detrimental. Hence we need to be able to control disorder in these materials to tailor their properties.
Exploring this concept requires the ability to understand, eliminate or harness the effects of disorder. Recently we have demonstrated an Anderson-type transition from insulating to metallic behaviour upon annealing. However, to fully utilize these ideas it is mandatory to realize devices with a more directly controllable degree of disorder. Within the framework of this project, we will develop a tuneable Anderson insulator to delocalize charge carriers. This allows us to address a) the transition from an insulator to a metal, the impact of disorder on superconductors (b) and topological insulators (c) and finally d) the ability to control thermoelectric properties by tuneable electronic disorder. From the results to be obtained we expect consequences for a wide range of materials listed in our “treasure map”, with promising new technological applications in various devices.
Summary
Better performance of future computers and communication equipment requires substantially higher speeds of switching devices at lower energy consumption. Those requirements can only be achieved by substantial improvement of the transport properties of the materials employed. The transport of charge and heat is strongly influenced by disorder. In recent years we have found a unique class of crystalline materials which combines an exceptionally high, yet tuneable degree of disorder with remarkable transport properties. This class includes the best phase change materials, superconductors with an unconventional coupling mechanism, good thermoelectrics, as well as known topological insulators. For these different phenomena disorder is either very beneficial or – if unconditioned - rather detrimental. Hence we need to be able to control disorder in these materials to tailor their properties.
Exploring this concept requires the ability to understand, eliminate or harness the effects of disorder. Recently we have demonstrated an Anderson-type transition from insulating to metallic behaviour upon annealing. However, to fully utilize these ideas it is mandatory to realize devices with a more directly controllable degree of disorder. Within the framework of this project, we will develop a tuneable Anderson insulator to delocalize charge carriers. This allows us to address a) the transition from an insulator to a metal, the impact of disorder on superconductors (b) and topological insulators (c) and finally d) the ability to control thermoelectric properties by tuneable electronic disorder. From the results to be obtained we expect consequences for a wide range of materials listed in our “treasure map”, with promising new technological applications in various devices.
Max ERC Funding
2 186 000 €
Duration
Start date: 2014-03-01, End date: 2019-02-28