Project acronym EDEQS
Project ENTANGLING AND DISENTANGLING EXTENDED QUANTUM SYSTEMS IN AND OUT OF EQUILIBRIUM
Researcher (PI) Pasquale Calabrese
Host Institution (HI) SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Call Details Starting Grant (StG), PE2, ERC-2011-StG_20101014
Summary "It is nowadays well established that many-body quantum systems in one and two spatial dimensions exhibit unconventional collective behavior that gives rise to intriguing novel states of matter. Examples are topological states exhibiting nonabelian statistics in 2D and spin-charge separated metals and Mott insulators in 1D. An important focus of current research is to characterize both equilibrium and non-equilibrium dynamics of such systems. The latter has become experimentally accessible only during the last decade and constitutes one of the main frontiers of modern theoretical physics. In recent years it has become clear that entanglement is a useful concept for characterizing different states of matter as well as non-equilibrium time evolution.
One main aim of this proposal is to utilize entanglement measures to fully classify states of matter in low dimensional systems. This will be achieved by carrying out a systematic study of the entanglement of several disconnected regions in 1D quantum critical systems. In addition, entanglement measures will be used to benchmark the performance of numerical algorithms based on tensor network states (both in 1D and 2D) and identify the ""optimal"" algorithm for finding the ground state of a given strongly correlated many-body system.
The second main aim of this proposal is to utilize the entanglement to identify the most important features of the the non equilibrium time evolution after a ""quantum quench"", with a view to solve exactly the quench dynamics in strongly interacting integrable models. A particular question we will address is which observables ""thermalize"", which is an issue of tremendous current experimental and theoretical interest. By combining analytic and numerical techniques we will then study the non equilibrium dynamics of non integrable models, in order to quantify the effects of integrability."
Summary
"It is nowadays well established that many-body quantum systems in one and two spatial dimensions exhibit unconventional collective behavior that gives rise to intriguing novel states of matter. Examples are topological states exhibiting nonabelian statistics in 2D and spin-charge separated metals and Mott insulators in 1D. An important focus of current research is to characterize both equilibrium and non-equilibrium dynamics of such systems. The latter has become experimentally accessible only during the last decade and constitutes one of the main frontiers of modern theoretical physics. In recent years it has become clear that entanglement is a useful concept for characterizing different states of matter as well as non-equilibrium time evolution.
One main aim of this proposal is to utilize entanglement measures to fully classify states of matter in low dimensional systems. This will be achieved by carrying out a systematic study of the entanglement of several disconnected regions in 1D quantum critical systems. In addition, entanglement measures will be used to benchmark the performance of numerical algorithms based on tensor network states (both in 1D and 2D) and identify the ""optimal"" algorithm for finding the ground state of a given strongly correlated many-body system.
The second main aim of this proposal is to utilize the entanglement to identify the most important features of the the non equilibrium time evolution after a ""quantum quench"", with a view to solve exactly the quench dynamics in strongly interacting integrable models. A particular question we will address is which observables ""thermalize"", which is an issue of tremendous current experimental and theoretical interest. By combining analytic and numerical techniques we will then study the non equilibrium dynamics of non integrable models, in order to quantify the effects of integrability."
Max ERC Funding
1 108 000 €
Duration
Start date: 2011-09-01, End date: 2016-08-31
Project acronym ELYCHE
Project Electron-scale dynamics in chemistry
Researcher (PI) Mauro Nisoli
Host Institution (HI) POLITECNICO DI MILANO
Call Details Advanced Grant (AdG), PE2, ERC-2008-AdG
Summary The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Summary
The target of the proposal is the first experimental demonstration of attosecond coherent control of electron motion in many-particle systems. The past decade has seen remarkable advances in the field of coherent control of chemical reactions thanks to the application of femtosecond technology; I propose to use the emerging attosecond technology to achieve coherent control of photodissociation reactions on a purely electronic scale. I will mainly concentrate on molecules with biological interest. The success of the project will be based on the possibility to initiate and control the sub-femtosecond electronic motion in large molecules, by using high-intensity isolated attosecond pulses. Such electron motion precedes and determines the subsequent nuclear rearrangement, which ultimately leads to the chemical change. In this way it will be possible to control in a direct way the outcome of a chemical reaction, which is one of the central problems in modern chemistry. A crucial benchmark of the project, substantially beyond the current state-of-the-art in Attosecond Science, will be the experimental demonstration of attosecond pump / attosecond-probe measurements, which for the present are not technically feasible. Electron dynamics will be measured, with attosecond resolution, in many-particle systems, ranging from simple molecules to complex bio-molecules.
The application of attosecond pulses and the development of attochemistry techniques for the investigation of the primary electronic steps of chemical processes, is a completely new and challenging research field, with tremendous prospects for both fundamental research and technology. In particular, the attosecond coherent control of charge localization in bio-molecules can offer unique information on the mechanisms at the basis of biological signal transmission or on the processes leading to damaging of complex biological molecules (from polypeptides to proteins and DNA).
Max ERC Funding
2 446 200 €
Duration
Start date: 2009-04-01, End date: 2014-03-31
Project acronym ENUBET
Project Enhanced NeUtrino BEams from kaon Tagging
Researcher (PI) Andrea Longhin
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Call Details Consolidator Grant (CoG), PE2, ERC-2015-CoG
Summary ENUBET has been designed to open a new window of opportunities in accelerator neutrino physics.
The proposed project enables for the first time the measurement of the positrons produced in the decay tunnel of conventional neutrino beams: these particles signal uniquely the generation of an electron neutrino at source.
Neutrino facilities enhanced by the ENUBET technique will have an unprecedented control of the neutrino flux. This will allow to reduce by one order of magnitude the uncertainties on neutrino cross sections: a leap that has been sought after since decades and that is needed to address the challenges of discovering matter-antimatter asymmetries in the leptonic sector.
The apparatus is a highly specialized electromagnetic calorimeter with fast response, sustaining particle rates as high as 0.5 MHz/cm^2, having excellent electron/pion separation capabilities with a reduced number of read-out channels. ENUBET will boost technologies that have been envisaged for high energy colliders to address this new challenge. On the other hand it will operate in a substantially different configuration. The experiment will be performed at the CERN Neutrino Platform, a recently approved facility where innovative neutrino detectors will be developed exploiting dedicated hadron beam-lines from the SPS accelerator. In the first phase of the project, ENUBET will address the challenges of particle identification from extended sources, developing innovative optical readout systems and cost-effective solutions for radiation imaging. This approach is based on cutting-edge technologies for single photon sensitive devices. During the second phase, the detector will be assembled and characterized at CERN with particle beams. Finally, it will be operated in time coincidence with Liquid Argon neutrino detectors, achieving a major step towards the realization of the concept of tagging individual neutrinos both at production and interaction level, on an event-by-event basis.
Summary
ENUBET has been designed to open a new window of opportunities in accelerator neutrino physics.
The proposed project enables for the first time the measurement of the positrons produced in the decay tunnel of conventional neutrino beams: these particles signal uniquely the generation of an electron neutrino at source.
Neutrino facilities enhanced by the ENUBET technique will have an unprecedented control of the neutrino flux. This will allow to reduce by one order of magnitude the uncertainties on neutrino cross sections: a leap that has been sought after since decades and that is needed to address the challenges of discovering matter-antimatter asymmetries in the leptonic sector.
The apparatus is a highly specialized electromagnetic calorimeter with fast response, sustaining particle rates as high as 0.5 MHz/cm^2, having excellent electron/pion separation capabilities with a reduced number of read-out channels. ENUBET will boost technologies that have been envisaged for high energy colliders to address this new challenge. On the other hand it will operate in a substantially different configuration. The experiment will be performed at the CERN Neutrino Platform, a recently approved facility where innovative neutrino detectors will be developed exploiting dedicated hadron beam-lines from the SPS accelerator. In the first phase of the project, ENUBET will address the challenges of particle identification from extended sources, developing innovative optical readout systems and cost-effective solutions for radiation imaging. This approach is based on cutting-edge technologies for single photon sensitive devices. During the second phase, the detector will be assembled and characterized at CERN with particle beams. Finally, it will be operated in time coincidence with Liquid Argon neutrino detectors, achieving a major step towards the realization of the concept of tagging individual neutrinos both at production and interaction level, on an event-by-event basis.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym EXPLORINGMATTER
Project Exploring Matter with Precision Charm and Beauty Production Measurements in Heavy Nuclei Collisions at LHCb
Researcher (PI) Giulia Manca
Host Institution (HI) UNIVERSITA DEGLI STUDI DI CAGLIARI
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary Collisions of ultra relativistic nuclei are a tool to reach huge energy densities and to form a new state of matter called Quark-Gluon Plasma (QGP), where quarks and gluons can move freely. A number of experiments have studied the possible formation of QGP, but the behaviour of heavy particles such as charm (c) and beauty (b) quarks when they traverse this medium is largely unknown and is the most powerful tool to prove the creation of the QGP and to characterise it. I will perform novel measurements using the LHCb detector at CERN, which covers an unique kinematic region, essential for a full understanding of QGP and nuclear matter in general. LHCb has been optimised to perform c and b quark physics measurements in proton-proton collisions. In EXPLORINGMATTER I propose to extend the LHCb programme to collect for the first time data in heavy ion collisions. Three experimental scenarios are foreseen: (1) Collisions of protons, benchmark to understand the behaviour of the c and b particles in other more complicated environments, as well as providing the final answers to the mechanism of heavy quarkonium production; (2) Collisions of protons with heavy nuclei, where cold nuclear matter effects in high-energy collisions can be studied in detail to understand lead nuclei collisions, where QGP is expected to be formed. (3) Collisions of heavy nuclei, pursued (a) by analysing heavy nuclei interactions through a dedicated setup in which gas will be injected in the LHCb interaction region, reaching energy densities typical of dedicated fixed target experiments; (b) by collecting heavy ion collision data at the LHC. This second setup, which has not been envisaged by LHCb up to now will revolutionise the measurements in this area thanks to the LHCb coverage and precision not achievable by any other experiment. My measurements will furthermore indicate the route to new experiments that could be designed on the basis of these findings.
Summary
Collisions of ultra relativistic nuclei are a tool to reach huge energy densities and to form a new state of matter called Quark-Gluon Plasma (QGP), where quarks and gluons can move freely. A number of experiments have studied the possible formation of QGP, but the behaviour of heavy particles such as charm (c) and beauty (b) quarks when they traverse this medium is largely unknown and is the most powerful tool to prove the creation of the QGP and to characterise it. I will perform novel measurements using the LHCb detector at CERN, which covers an unique kinematic region, essential for a full understanding of QGP and nuclear matter in general. LHCb has been optimised to perform c and b quark physics measurements in proton-proton collisions. In EXPLORINGMATTER I propose to extend the LHCb programme to collect for the first time data in heavy ion collisions. Three experimental scenarios are foreseen: (1) Collisions of protons, benchmark to understand the behaviour of the c and b particles in other more complicated environments, as well as providing the final answers to the mechanism of heavy quarkonium production; (2) Collisions of protons with heavy nuclei, where cold nuclear matter effects in high-energy collisions can be studied in detail to understand lead nuclei collisions, where QGP is expected to be formed. (3) Collisions of heavy nuclei, pursued (a) by analysing heavy nuclei interactions through a dedicated setup in which gas will be injected in the LHCb interaction region, reaching energy densities typical of dedicated fixed target experiments; (b) by collecting heavy ion collision data at the LHC. This second setup, which has not been envisaged by LHCb up to now will revolutionise the measurements in this area thanks to the LHCb coverage and precision not achievable by any other experiment. My measurements will furthermore indicate the route to new experiments that could be designed on the basis of these findings.
Max ERC Funding
1 849 957 €
Duration
Start date: 2015-04-01, End date: 2020-03-31
Project acronym HBQFTNCER
Project Holomorphic Blocks in Quantum Field Theory: New Constructions of Exact Results
Researcher (PI) Sara Pasquetti
Host Institution (HI) UNIVERSITA' DEGLI STUDI DI MILANO-BICOCCA
Call Details Starting Grant (StG), PE2, ERC-2014-STG
Summary A central challenge in theoretical physics is to develop non-perturbative or exact methods to describe quantitatively the dynamics of strongly coupled quantum fields. This proposal aims to establish new exact methods for the study of supersymmetric quantum field theories thereby unveiling new integrable structures and fostering new correspondences and dualities. We will develop a new cut-and-sew formalism to compute partition functions and expectation values of observables of supersymmetric gauge theories on compact manifolds through the gluing of a fundamental set of building blocks, the holomorphic blocks. The decomposition of partition functions into holomorphic blocks corresponds to
the geometric decomposition of compact manifolds into standard simpler pieces. Similarly the gluing rules for the holomorphic blocks correspond to the geometric gluing rules. The key insight required to exploit the holomorphic block formalism is the deep connection between supersymmetric gauge theories and low dimensional exactly solvable systems such as 2d CFTs, TQFTs and spin chains. Two and four dimensional holomorphic blocks can be reinterpreted as conformal blocks in Liouville theory through an established correspondence between supersymmetric gauge theories and Liouville theory. We will provide a similar realisation of three and five dimensional holomorphic blocks in a new theory,
a q-deformed version of Liouville theory where the Virasoro algebra is replaced by the q-deformed Virasoro algebra.
We will develop this theory classifying the symmetries of correlation functions. These symmetries will be realised as gauge theory dualities, while the language of the q-deformed Liouville theory will become a new powerful tool to investigate supersymmetric gauge theories.
Summary
A central challenge in theoretical physics is to develop non-perturbative or exact methods to describe quantitatively the dynamics of strongly coupled quantum fields. This proposal aims to establish new exact methods for the study of supersymmetric quantum field theories thereby unveiling new integrable structures and fostering new correspondences and dualities. We will develop a new cut-and-sew formalism to compute partition functions and expectation values of observables of supersymmetric gauge theories on compact manifolds through the gluing of a fundamental set of building blocks, the holomorphic blocks. The decomposition of partition functions into holomorphic blocks corresponds to
the geometric decomposition of compact manifolds into standard simpler pieces. Similarly the gluing rules for the holomorphic blocks correspond to the geometric gluing rules. The key insight required to exploit the holomorphic block formalism is the deep connection between supersymmetric gauge theories and low dimensional exactly solvable systems such as 2d CFTs, TQFTs and spin chains. Two and four dimensional holomorphic blocks can be reinterpreted as conformal blocks in Liouville theory through an established correspondence between supersymmetric gauge theories and Liouville theory. We will provide a similar realisation of three and five dimensional holomorphic blocks in a new theory,
a q-deformed version of Liouville theory where the Virasoro algebra is replaced by the q-deformed Virasoro algebra.
We will develop this theory classifying the symmetries of correlation functions. These symmetries will be realised as gauge theory dualities, while the language of the q-deformed Liouville theory will become a new powerful tool to investigate supersymmetric gauge theories.
Max ERC Funding
1 287 088 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym HOLMES
Project The Electron Capture Decay of 163Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity
Researcher (PI) Stefano Ragazzi
Host Institution (HI) ISTITUTO NAZIONALE DI FISICA NUCLEARE
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary "HOLMES is aimed at directly measuring the electron neutrino mass using the electron capture (EC) decay of 163Ho.
The measurement of the absolute neutrino mass represents a major breakthrough in particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism.
The innovative approach of HOLMES consists in the calorimetric measurement of the energy released in the decay of 163Ho. In this way, all the atomic de-excitation energy is measured, except that carried away by the neutrino. A finite neutrino mass m causes a deformation of the energy spectrum which is truncated at Q-m, where Q is the EC transition energy. The sensitivity depends on Q - the lower the Q, the higher the sensitivity - and 163Ho is an ideal isotope with a Q around 2.5keV. The direct measurement exploits only energy and momentum conservation, and it is therefore completely model-independent. At the same time, the calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in neutrino mass measurements with beta spectrometers, and minimizes the effect of the atomic de-excitation process uncertainties.
HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1eV.
The detection techniques developed for HOLMES will have an impact in many frontier fields as astrophysics, material analysis, nuclear safety, archeometry, quantum communication."
Summary
"HOLMES is aimed at directly measuring the electron neutrino mass using the electron capture (EC) decay of 163Ho.
The measurement of the absolute neutrino mass represents a major breakthrough in particle physics and cosmology. Due to their abundance as big-bang relics, massive neutrinos strongly affect the large-scale structure and dynamics of the universe. In addition, the knowledge of the scale of neutrino masses, together with their hierarchy pattern, is invaluable to clarify the origin of fermion masses beyond the Higgs mechanism.
The innovative approach of HOLMES consists in the calorimetric measurement of the energy released in the decay of 163Ho. In this way, all the atomic de-excitation energy is measured, except that carried away by the neutrino. A finite neutrino mass m causes a deformation of the energy spectrum which is truncated at Q-m, where Q is the EC transition energy. The sensitivity depends on Q - the lower the Q, the higher the sensitivity - and 163Ho is an ideal isotope with a Q around 2.5keV. The direct measurement exploits only energy and momentum conservation, and it is therefore completely model-independent. At the same time, the calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in neutrino mass measurements with beta spectrometers, and minimizes the effect of the atomic de-excitation process uncertainties.
HOLMES will deploy a large array of low temperature microcalorimeters with implanted 163Ho nuclei. The resulting mass sensitivity will be as low as 0.4eV. HOLMES will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1eV.
The detection techniques developed for HOLMES will have an impact in many frontier fields as astrophysics, material analysis, nuclear safety, archeometry, quantum communication."
Max ERC Funding
3 057 067 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym iMPACT
Project innovative Medical Protons Achromatic Calorimeter and Tracker
Researcher (PI) Piero Giubilato
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PADOVA
Call Details Consolidator Grant (CoG), PE2, ERC-2014-CoG
Summary The iMPACT project focuses on the realization of a proton Computed Tomography (pCT) scanner capable of acquiring a target full 3D image with 1s exposure, therefore opening the way to the practical application of proton imaging technique in medical radiotherapy treatments. Such cutting-edge particles scanner combines innovative ideas devised for the future High Energy Physics experiments together with original developments in the microelectronic field to enable charged particles imaging at the GHz scale.
In recent years the use of hadrons (1H and 12C ions) for cancer radiation treatment has become an established technique and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise target (body) imaging for accurate beam delivery is decisive. pCT systems, currently in their R&D phase, provide the ultimate in low dose (< 2 mGy), 3D imaging for hadrons treatment guidance. Key components of a pCT system are the detectors used to track the protons and measure their residual energy.
The iMPACT scanner, composed by a proprietary monolithic pixels tracking detector and an innovative achromatic calorimeter, will improve current pCT imaging speed by more than a factor 100, leading to potential recording times of about 1 second for a full 3D target image (compared to present ≈ 10 minutes). The iMPACT detector will also have higher spatial resolution (equal or better than 10 µm) and lower material budget (by a factor 10) respect to state of the art systems, further enhancing 3D imaging accuracy.
Not least when considering actual industrial application, production costs will be far lower than existent systems, because all sensors will be designed with commercially available technologies, making it possible to move pCT from the academic research realm to that of viable medical equipment.
Summary
The iMPACT project focuses on the realization of a proton Computed Tomography (pCT) scanner capable of acquiring a target full 3D image with 1s exposure, therefore opening the way to the practical application of proton imaging technique in medical radiotherapy treatments. Such cutting-edge particles scanner combines innovative ideas devised for the future High Energy Physics experiments together with original developments in the microelectronic field to enable charged particles imaging at the GHz scale.
In recent years the use of hadrons (1H and 12C ions) for cancer radiation treatment has become an established technique and many facilities are currently operational or under construction worldwide. To fully exploit the therapeutic advantages offered by hadron therapy, precise target (body) imaging for accurate beam delivery is decisive. pCT systems, currently in their R&D phase, provide the ultimate in low dose (< 2 mGy), 3D imaging for hadrons treatment guidance. Key components of a pCT system are the detectors used to track the protons and measure their residual energy.
The iMPACT scanner, composed by a proprietary monolithic pixels tracking detector and an innovative achromatic calorimeter, will improve current pCT imaging speed by more than a factor 100, leading to potential recording times of about 1 second for a full 3D target image (compared to present ≈ 10 minutes). The iMPACT detector will also have higher spatial resolution (equal or better than 10 µm) and lower material budget (by a factor 10) respect to state of the art systems, further enhancing 3D imaging accuracy.
Not least when considering actual industrial application, production costs will be far lower than existent systems, because all sensors will be designed with commercially available technologies, making it possible to move pCT from the academic research realm to that of viable medical equipment.
Max ERC Funding
1 810 000 €
Duration
Start date: 2016-01-01, End date: 2019-12-31
Project acronym INITIUM
Project an Innovative Negative Ion TIme projection chamber for Underground dark Matter searches
Researcher (PI) Elisabetta BARACCHINI
Host Institution (HI) GRAN SASSO SCIENCE INSTITUTE
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary INITIUM: an Innovative Negative Ion TIme projection chamber for Underground dark Matter searches. INITIUM goal is to boost the advancement of gaseous Time Projection Chamber detectors in the Dark Matter (DM) searches field, one of the most compelling issues of todays fundamental physics. I believe this approach to be superior because of its active neutron/electron discrimination, directional and fiducialization capability down to low energies and versatility in terms of target material. Thanks to recent advances in Micro Pattern Gas Detectors amplification and improved readout techniques, TPCs are nowadays mature detectors to aim at developing a ton-scale experiment. INITIUM focuses on the development and operation of the first 1 m3 Negative Ion TPC with Gas Electron Multipliers amplification and optical readout with CMOS-based cameras and PMTs for directional DM searches at Laboratori Nazionali del Gran Sasso (LNGS). INITIUM will put new significant constraints in a DM WIMP-nucleon scattering parameter space still unexplored to these days, with a remarkable sensitivity down to 10-42-10-43 cm2 for Spin Independent coupling in the 1-10 GeV WIMP mass region. As a by-product, INITIUM will also precisely and simultaneously measure environmental fast and thermal neutron flux at LNGS, supplying crucial information for any present and future experiment in this location. Consequently, I will demonstrate the proof-of-principle and scalability of INITIUM approach towards the development of a ton-scale detector in the context of CYGNUS, an international collaboration (of which I am one of the Spokespersons and PIs) recently gathered together with the aim to establish a Galactic Directional Recoil Observatory, that can test the DM hypothesis beyond the Neutrino Floor and measure the coherent scatter of galactic neutrinos, generating a significant long-term impact on detection techniques for rare events searches.
Summary
INITIUM: an Innovative Negative Ion TIme projection chamber for Underground dark Matter searches. INITIUM goal is to boost the advancement of gaseous Time Projection Chamber detectors in the Dark Matter (DM) searches field, one of the most compelling issues of todays fundamental physics. I believe this approach to be superior because of its active neutron/electron discrimination, directional and fiducialization capability down to low energies and versatility in terms of target material. Thanks to recent advances in Micro Pattern Gas Detectors amplification and improved readout techniques, TPCs are nowadays mature detectors to aim at developing a ton-scale experiment. INITIUM focuses on the development and operation of the first 1 m3 Negative Ion TPC with Gas Electron Multipliers amplification and optical readout with CMOS-based cameras and PMTs for directional DM searches at Laboratori Nazionali del Gran Sasso (LNGS). INITIUM will put new significant constraints in a DM WIMP-nucleon scattering parameter space still unexplored to these days, with a remarkable sensitivity down to 10-42-10-43 cm2 for Spin Independent coupling in the 1-10 GeV WIMP mass region. As a by-product, INITIUM will also precisely and simultaneously measure environmental fast and thermal neutron flux at LNGS, supplying crucial information for any present and future experiment in this location. Consequently, I will demonstrate the proof-of-principle and scalability of INITIUM approach towards the development of a ton-scale detector in the context of CYGNUS, an international collaboration (of which I am one of the Spokespersons and PIs) recently gathered together with the aim to establish a Galactic Directional Recoil Observatory, that can test the DM hypothesis beyond the Neutrino Floor and measure the coherent scatter of galactic neutrinos, generating a significant long-term impact on detection techniques for rare events searches.
Max ERC Funding
1 995 719 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym INTEGRAL
Project Integrable Systems in Gauge and String Theory
Researcher (PI) Konstantin Zarembo
Host Institution (HI) STOCKHOLMS UNIVERSITET
Call Details Advanced Grant (AdG), PE2, ERC-2013-ADG
Summary The project is aimed at uncovering new links between integrable systems, string theory and quantum field theory. The goal is to study non-perturbative phenomena in strongly-coupled field theories, and to understand relationship between gauge fields and strings at a deeper level.
Summary
The project is aimed at uncovering new links between integrable systems, string theory and quantum field theory. The goal is to study non-perturbative phenomena in strongly-coupled field theories, and to understand relationship between gauge fields and strings at a deeper level.
Max ERC Funding
1 693 692 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym LoTGlasSy
Project Low Temperature Glassy Systems
Researcher (PI) Giorgio Parisi
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Jamming of hard spheres is a new critical phenomenon whose exponents are different from those of the other known transitions. These exponents have been recently computed in a mean field approximation whose limits of validity are not known. Even if their values are in very good agreement with the ones obtained by accurate numerical simulations, the deep reasons for this success are not understood.
Trampolining from these results I plan to develop a theory of the large scale properties of the free energy landscape of glasses at low temperature. I will use techniques of statistical field theory and of renormalization group to identify and compute universal features. This proposal has the following goals.
• We will develop a complete analytic theory of the infinite pressure limit (jamming) of hard spheres in dimensions greater than the upper critical dimensions. We will first compute analytically the upper critical dimension. Numerical simulations suggest that the upper critical dimensions is equal to or smaller than 2: this result is puzzling and it would be very interesting to find out if this indication is supported by the theory. We will also investigate in detail the scaling properties and the conformal invariance of the correlation functions.
• Starting from these results we will derive universal properties of glassy materials in the low temperature regions in the classical and in the quantum regime. The properties of multiple equilibrium configurations are crucial; we will study the structure of small (localized or extended) oscillations around them, the classical and quantum tunneling barriers.
• We will analyze both equilibrium features and off-equilibrium features (like plasticity and the time dependence of the specific heat). The subject has been widely discussed and phenomenological laws have been derived. I aim to obtain these laws from first principles using the properties of the free energy landscape in glasses that will be derived analytically.
Summary
Jamming of hard spheres is a new critical phenomenon whose exponents are different from those of the other known transitions. These exponents have been recently computed in a mean field approximation whose limits of validity are not known. Even if their values are in very good agreement with the ones obtained by accurate numerical simulations, the deep reasons for this success are not understood.
Trampolining from these results I plan to develop a theory of the large scale properties of the free energy landscape of glasses at low temperature. I will use techniques of statistical field theory and of renormalization group to identify and compute universal features. This proposal has the following goals.
• We will develop a complete analytic theory of the infinite pressure limit (jamming) of hard spheres in dimensions greater than the upper critical dimensions. We will first compute analytically the upper critical dimension. Numerical simulations suggest that the upper critical dimensions is equal to or smaller than 2: this result is puzzling and it would be very interesting to find out if this indication is supported by the theory. We will also investigate in detail the scaling properties and the conformal invariance of the correlation functions.
• Starting from these results we will derive universal properties of glassy materials in the low temperature regions in the classical and in the quantum regime. The properties of multiple equilibrium configurations are crucial; we will study the structure of small (localized or extended) oscillations around them, the classical and quantum tunneling barriers.
• We will analyze both equilibrium features and off-equilibrium features (like plasticity and the time dependence of the specific heat). The subject has been widely discussed and phenomenological laws have been derived. I aim to obtain these laws from first principles using the properties of the free energy landscape in glasses that will be derived analytically.
Max ERC Funding
1 760 000 €
Duration
Start date: 2016-06-01, End date: 2021-05-31