Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym BETTERSENSE
Project Nanodevice Engineering for a Better Chemical Gas Sensing Technology
Researcher (PI) Juan Daniel Prades Garcia
Host Institution (HI) UNIVERSITAT DE BARCELONA
Call Details Starting Grant (StG), PE7, ERC-2013-StG
Summary BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Summary
BetterSense aims to solve the two main problems in current gas sensor technologies: the high power consumption and the poor selectivity. For the former, we propose a radically new approach: to integrate the sensing components and the energy sources intimately, at the nanoscale, in order to achieve a new kind of sensor concept featuring zero power consumption. For the latter, we will mimic the biological receptors designing a kit of gas-specific molecular organic functionalizations to reach ultra-high gas selectivity figures, comparable to those of biological processes. Both cutting-edge concepts will be developed in parallel an integrated together to render a totally new gas sensing technology that surpasses the state-of-the-art.
As a matter of fact, the project will enable, for the first time, the integration of gas detectors in energetically autonomous sensors networks. Additionally, BetterSense will provide an integral solution to the gas sensing challenge by producing a full set of gas-specific sensors over the same platform to ease their integration in multi-analyte systems. Moreover, the project approach will certainly open opportunities in adjacent fields in which power consumption, specificity and nano/micro integration are a concern, such as liquid chemical and biological sensing.
In spite of the promising evidences that demonstrate the feasibility of this proposal, there are still many scientific and technological issues to solve, most of them in the edge of what is known and what is possible today in nano-fabrication and nano/micro integration. For this reason, BetterSense also aims to contribute to the global challenge of making nanodevices compatible with scalable, cost-effective, microelectronic technologies.
For all this, addressing this challenging proposal in full requires a funding scheme compatible with a high-risk/high-gain vision to finance the full dedication of a highly motivated research team with multidisciplinary skill
Max ERC Funding
1 498 452 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym CORTEXFOLDING
Project Understanding the development and function of cerebral cortex folding
Researcher (PI) Victor Borrell Franco
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Summary
The mammalian cerebral cortex was subject to a dramatic expansion in surface area during evolution. This process is recapitulated during development and is accompanied by folding of the cortical sheet, which allows fitting a large cortical surface within a limited cranial volume. A loss of cortical folds is linked to severe intellectual impairment in humans, so cortical folding is believed to be crucial for brain function. However, developmental mechanisms responsible for cortical folding, and the influence of this on cortical function, remain largely unknown. The goal of this proposal is to understand the genetic and cellular mechanisms that control the developmental expansion and folding of the cerebral cortex, and what is the impact of these processes on its functional organization. Human studies have identified genes essential for the proper folding of the human cerebral cortex. Genetic manipulations in mice have unraveled specific functions for some of those genes in the development of the cerebral cortex. But because the mouse cerebral cortex does not fold naturally, the mechanisms of cortical expansion and folding in larger brains remain unknown. We will study these mechanisms on ferret, an ideal model with a naturally folded cerebral cortex. We will combine the advantages of ferrets with cell biology, genetics and next-generation transcriptomics, together with state-of-the-art in vivo, in vitro and in silico approaches, including in vivo imaging of functional columnar maps. The successful execution of this project will provide insights into developmental and genetic risk factors for anomalies in human cortical topology, and into mechanisms responsible for the early formation of cortical functional maps.
Max ERC Funding
1 701 116 €
Duration
Start date: 2013-01-01, End date: 2018-06-30
Project acronym CoSI
Project Functional connectomics of the amygdala in social interactions of different valence
Researcher (PI) Ewelina KNAPSKA
Host Institution (HI) INSTYTUT BIOLOGII DOSWIADCZALNEJ IM. M. NENCKIEGO POLSKIEJ AKADEMII NAUK
Call Details Starting Grant (StG), LS5, ERC-2016-STG
Summary Understanding how brain controls social interactions is one of the central goals of neuroscience. Whereas social interactions and their effects on the emotional state of an individual are relatively well described at the behavioral level, much less is known about neural mechanisms involved in these very complex phenomena, especially in the amygdala, a key structure processing emotions in the brain.
Recent investigations, mainly on fear learning and extinction, have shown that there are highly specialized neuronal circuits within the amygdala that control specific behaviors. However, a high density of interconnections, both among amygdalar nuclei and between amygdalar nuclei and other brain regions, and the lack of a predictable distribution of functional cell types make defining behavioral functions of the amygdalar neuronal circuits challenging. Therefore, to understand how different neuronal circuits in the amygdala produce different behaviors tracing anatomical connections between activated neurons, i.e., the functional anatomy is needed.
Published data and our preliminary results suggest that within the amygdala there exist different neuronal circuits mediating social interactions of different valence (positive or negative affective significance) and that circuits controlling social and non-social emotions differ. Combining our recently developed behavioral models of adult, non-aggressive, same-sex social interactions with the methods of tracing anatomical connections between activated neurons, we plan to identify neural circuitry underlying social interactions of different emotional valence. This goal will be achieved by: (1) Characterizing functional anatomy of neuronal circuits in the amygdala underlying socially transferred emotions; (2) Examining role of the identified neuronal subpopulations in control of social behaviors; (3) Verifying role of matrix metalloproteinase-9-dependent neuronal subpopulations within the amygdala in social motivation.
Summary
Understanding how brain controls social interactions is one of the central goals of neuroscience. Whereas social interactions and their effects on the emotional state of an individual are relatively well described at the behavioral level, much less is known about neural mechanisms involved in these very complex phenomena, especially in the amygdala, a key structure processing emotions in the brain.
Recent investigations, mainly on fear learning and extinction, have shown that there are highly specialized neuronal circuits within the amygdala that control specific behaviors. However, a high density of interconnections, both among amygdalar nuclei and between amygdalar nuclei and other brain regions, and the lack of a predictable distribution of functional cell types make defining behavioral functions of the amygdalar neuronal circuits challenging. Therefore, to understand how different neuronal circuits in the amygdala produce different behaviors tracing anatomical connections between activated neurons, i.e., the functional anatomy is needed.
Published data and our preliminary results suggest that within the amygdala there exist different neuronal circuits mediating social interactions of different valence (positive or negative affective significance) and that circuits controlling social and non-social emotions differ. Combining our recently developed behavioral models of adult, non-aggressive, same-sex social interactions with the methods of tracing anatomical connections between activated neurons, we plan to identify neural circuitry underlying social interactions of different emotional valence. This goal will be achieved by: (1) Characterizing functional anatomy of neuronal circuits in the amygdala underlying socially transferred emotions; (2) Examining role of the identified neuronal subpopulations in control of social behaviors; (3) Verifying role of matrix metalloproteinase-9-dependent neuronal subpopulations within the amygdala in social motivation.
Max ERC Funding
1 312 500 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym FlexAnalytics
Project Advanced Analytics to Empower the Small Flexible Consumers of Electricity
Researcher (PI) Juan Miguel MORALES
Host Institution (HI) UNIVERSIDAD DE MALAGA
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Summary
David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Max ERC Funding
1 203 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym FLEXOCOMP
Project Enabling flexoelectric engineering through modeling and computation
Researcher (PI) Irene Arias Vicente
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE7, ERC-2015-STG
Summary Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.
Summary
Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym FLINT
Project Finite-Length Information Theory
Researcher (PI) Albert Guillen I Fabregas
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), PE7, ERC-2010-StG_20091028
Summary Shannon's Information Theory establishes the fundamental limits of information processing systems. A concept that is hidden in the mathematical proofs most of the Information Theory literature, is that in order to achieve the fundamental limits we need sequences of infinite duration. Practical information processing systems have strict limitations in terms of length, induced by system constraints on delay and complexity. The vast majority of the Information Theory literature ignores these constraints and theoretical studies that provide a finite-length treatment of information processing are hence urgently needed. When finite-lengths are employed, asymptotic techniques (laws of large numbers, large deviations) cannot be invoked and new techniques must be sought. A fundamental understanding of the impact of finite-lengths is crucial to harvesting the potential gains in practice. This project is aimed at contributing towards the ambitious goal of providing a unified framework for the study of finite-length Information Theory. The approach in this project will be based on information-spectrum combined with tight bounding techniques. A comprehensive study of finite-length information theory will represent a major step forward in Information Theory, with the potential to provide new tools and techniques to solve open problems in multiple disciplines. This unconventional and challenging treatment of Information Theory will advance the area and will contribute to disciplines where Information Theory is relevant. Therefore, the results of this project will be of benefit to areas such as communication theory, probability theory, statistics, physics, computer science, mathematics, economics, bioinformatics and computational neuroscience.
Summary
Shannon's Information Theory establishes the fundamental limits of information processing systems. A concept that is hidden in the mathematical proofs most of the Information Theory literature, is that in order to achieve the fundamental limits we need sequences of infinite duration. Practical information processing systems have strict limitations in terms of length, induced by system constraints on delay and complexity. The vast majority of the Information Theory literature ignores these constraints and theoretical studies that provide a finite-length treatment of information processing are hence urgently needed. When finite-lengths are employed, asymptotic techniques (laws of large numbers, large deviations) cannot be invoked and new techniques must be sought. A fundamental understanding of the impact of finite-lengths is crucial to harvesting the potential gains in practice. This project is aimed at contributing towards the ambitious goal of providing a unified framework for the study of finite-length Information Theory. The approach in this project will be based on information-spectrum combined with tight bounding techniques. A comprehensive study of finite-length information theory will represent a major step forward in Information Theory, with the potential to provide new tools and techniques to solve open problems in multiple disciplines. This unconventional and challenging treatment of Information Theory will advance the area and will contribute to disciplines where Information Theory is relevant. Therefore, the results of this project will be of benefit to areas such as communication theory, probability theory, statistics, physics, computer science, mathematics, economics, bioinformatics and computational neuroscience.
Max ERC Funding
1 303 606 €
Duration
Start date: 2011-08-01, End date: 2017-07-31
Project acronym JELLY
Project Biomolecular Hydrogels – from Supramolecular Organization and Dynamics to Biological Function
Researcher (PI) Ralf Peter Richter
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary Certain proteins and glycans self-organize in vivo into soft and strongly hydrated, dynamic and gel-like supramolecular assemblies. Among such biomolecular hydrogels are the jelly-like matrix that is formed around the egg during ovulation, mucosal membranes, slimy coats produced by bacteria in biofilms, and the nuclear pore permeability barrier.
Even though biomolecular hydrogels play crucial roles in many fundamental biological processes, there is still a very limited understanding about how they function. Our goal is to assess and to understand the relation between the organizational and dynamic features of such supramolecular assemblies, their physicochemical properties, and the resulting biological functions. We will investigate these relationships directly on the supramolecular level, a level that - for this type of assemblies - is hardly accessible with conventional approaches.
To this end, we use purpose-designed in vitro model systems that are well-defined in the sense that their composition and supramolecular structure can be controlled and interrogated. These tailor-made models, together with a toolbox of surface-sensitive in situ analysis techniques, permit tightly controlled and quantitative experiments. Combined with polymer physics theory, the experimental data allow us to directly test existing hypotheses and to formulate new hypotheses that can be further tested in complementary molecular and cell-based assays.
This project focuses on two types of biomolecular hydrogels: (i) the nuclear pore permeability barrier, a nanoscopic protein meshwork that regulates all macromolecular transport into and out of the nucleus of eukaryotic cells, and (ii) extracellular hydrogel-like matrices that are scaffolded by the polysaccharide hyaluronan and that are of prime importance in a wide range of physiological and pathological processes including inflammation, fertilization and osteoarthritis.
Summary
Certain proteins and glycans self-organize in vivo into soft and strongly hydrated, dynamic and gel-like supramolecular assemblies. Among such biomolecular hydrogels are the jelly-like matrix that is formed around the egg during ovulation, mucosal membranes, slimy coats produced by bacteria in biofilms, and the nuclear pore permeability barrier.
Even though biomolecular hydrogels play crucial roles in many fundamental biological processes, there is still a very limited understanding about how they function. Our goal is to assess and to understand the relation between the organizational and dynamic features of such supramolecular assemblies, their physicochemical properties, and the resulting biological functions. We will investigate these relationships directly on the supramolecular level, a level that - for this type of assemblies - is hardly accessible with conventional approaches.
To this end, we use purpose-designed in vitro model systems that are well-defined in the sense that their composition and supramolecular structure can be controlled and interrogated. These tailor-made models, together with a toolbox of surface-sensitive in situ analysis techniques, permit tightly controlled and quantitative experiments. Combined with polymer physics theory, the experimental data allow us to directly test existing hypotheses and to formulate new hypotheses that can be further tested in complementary molecular and cell-based assays.
This project focuses on two types of biomolecular hydrogels: (i) the nuclear pore permeability barrier, a nanoscopic protein meshwork that regulates all macromolecular transport into and out of the nucleus of eukaryotic cells, and (ii) extracellular hydrogel-like matrices that are scaffolded by the polysaccharide hyaluronan and that are of prime importance in a wide range of physiological and pathological processes including inflammation, fertilization and osteoarthritis.
Max ERC Funding
1 497 167 €
Duration
Start date: 2012-12-01, End date: 2018-02-28