Project acronym NANOGRAPHOUT
Project Design, synthesis, study and applications of distorted nanographenes
Researcher (PI) María Araceli González Campaña
Host Institution (HI) UNIVERSIDAD DE GRANADA
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary Graphene is considered a very promising material. Perfect samples of graphene without structural defects are extremely electrical and thermal conductive. However, defects usually appear during the production of graphene, modifying its thermal, electrical and mechanical properties. If we understand the influence of imperfections on the properties of graphene, we may tune its local electrical properties by controlling the presence of defects, leading to new organic semiconductor materials. We aim to embed seven- and higher membered rings into an otherwise planar NANOGRAPHene lattice as a new tool for the preparation of innovative materials for organic electronics. These defects would induce a curvature in the planar sheet distorting the structure OUT of the plane. NANOGRAPHOUT focuses on providing a general synthetic method for the construction of a variety of distorted nanographenes with good control on size, shape and the edges of the final compounds. Key synthetic steps include alkyne cyclotrimerization and cyclodehydrogenation reactions. By evaluating the morphology, optical and electronic properties and electron transport of synthesized nanographenes, we aim to establish the first comprehensive study clarifying the influence of defects on the properties of nanographenes. We will test electrical transport properties of selected compounds in organic thin-film field-effect transistors (OTFTs) laying the foundation for using distorted nanographenes as organic semiconductors based on pi-pi interactions. With the same bottom-up approach based on organic synthesis we intend to present nanographenes with helical chirality. Adding chiroptical response to the semiconductor properties of nanographenes will provide the new devices the added value of their potential application in photonics. As proof-of-concept, we plan to implement helically chiral distorted nanographenes as active layer in OTFTs and evaluate their use as elliptically polarized light emitters and detectors.
Summary
Graphene is considered a very promising material. Perfect samples of graphene without structural defects are extremely electrical and thermal conductive. However, defects usually appear during the production of graphene, modifying its thermal, electrical and mechanical properties. If we understand the influence of imperfections on the properties of graphene, we may tune its local electrical properties by controlling the presence of defects, leading to new organic semiconductor materials. We aim to embed seven- and higher membered rings into an otherwise planar NANOGRAPHene lattice as a new tool for the preparation of innovative materials for organic electronics. These defects would induce a curvature in the planar sheet distorting the structure OUT of the plane. NANOGRAPHOUT focuses on providing a general synthetic method for the construction of a variety of distorted nanographenes with good control on size, shape and the edges of the final compounds. Key synthetic steps include alkyne cyclotrimerization and cyclodehydrogenation reactions. By evaluating the morphology, optical and electronic properties and electron transport of synthesized nanographenes, we aim to establish the first comprehensive study clarifying the influence of defects on the properties of nanographenes. We will test electrical transport properties of selected compounds in organic thin-film field-effect transistors (OTFTs) laying the foundation for using distorted nanographenes as organic semiconductors based on pi-pi interactions. With the same bottom-up approach based on organic synthesis we intend to present nanographenes with helical chirality. Adding chiroptical response to the semiconductor properties of nanographenes will provide the new devices the added value of their potential application in photonics. As proof-of-concept, we plan to implement helically chiral distorted nanographenes as active layer in OTFTs and evaluate their use as elliptically polarized light emitters and detectors.
Max ERC Funding
1 492 675 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym NANOPUZZLE
Project Multifunctional Magnetic Nanoparticles: Towards Smart Drugs Design
Researcher (PI) Jesús Martínez De La Fuente
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary Nature has been utilizing nanostructures for billion of years. The following two properties, (i) being about the size of typical biological objects and (ii) the possibility of tailoring their properties by changing their size, make nanoparticles attractive for biomedical applications. Using nanoparticles to deliver drugs to tumours offers an attractive possibility to avoid obstacles that occur during conventional systemic drug administration. This NANOPUZZLE project pretends to develop an innovative controlled release methodology, based on hyperthermia and magnetic nanoparticles, as platform for the incorporation of different molecules with different functionalities, to obtain a multifunctional system for cancer treatment and diagnose that leads antitumoral drugs discharge only in the tumoral area. Multifunctional magnetic nanoparticles loaded with a targeting agent (folic acid) and a potent antitumoral drug (doxorubicin) will be prepared. These active molecules will be coupled to the magnetic nanoparticles (MNPs) due to complementary oligonucleotides strands (oligo-zipper). Due to the magnetic properties of these nanomaterials, a local heating induced by an alternating magnetic field, will release the drug in the desired target as a consequence of the DNA denaturation (oligo-unzipping). For this approach, the increase of temperature is only required directly in the nanoparticles and the heating of the surroundings is not needed. For instance, less quantity of nanoparticles and a weaker external magnetic field will be required, avoiding the main inconveniences of conventional hyperthermia treatments. Furthermore, the superparamagnetic properties of these MNPs will also allow their use as contrast agents for tracking and diagnosis by magnetic resonance imaging (MRI).
Summary
Nature has been utilizing nanostructures for billion of years. The following two properties, (i) being about the size of typical biological objects and (ii) the possibility of tailoring their properties by changing their size, make nanoparticles attractive for biomedical applications. Using nanoparticles to deliver drugs to tumours offers an attractive possibility to avoid obstacles that occur during conventional systemic drug administration. This NANOPUZZLE project pretends to develop an innovative controlled release methodology, based on hyperthermia and magnetic nanoparticles, as platform for the incorporation of different molecules with different functionalities, to obtain a multifunctional system for cancer treatment and diagnose that leads antitumoral drugs discharge only in the tumoral area. Multifunctional magnetic nanoparticles loaded with a targeting agent (folic acid) and a potent antitumoral drug (doxorubicin) will be prepared. These active molecules will be coupled to the magnetic nanoparticles (MNPs) due to complementary oligonucleotides strands (oligo-zipper). Due to the magnetic properties of these nanomaterials, a local heating induced by an alternating magnetic field, will release the drug in the desired target as a consequence of the DNA denaturation (oligo-unzipping). For this approach, the increase of temperature is only required directly in the nanoparticles and the heating of the surroundings is not needed. For instance, less quantity of nanoparticles and a weaker external magnetic field will be required, avoiding the main inconveniences of conventional hyperthermia treatments. Furthermore, the superparamagnetic properties of these MNPs will also allow their use as contrast agents for tracking and diagnosis by magnetic resonance imaging (MRI).
Max ERC Funding
1 541 310 €
Duration
Start date: 2010-02-01, End date: 2015-12-31
Project acronym NaTuRe
Project Nanotube Mechanical Resonator, Spin, and Superfluidity
Researcher (PI) Adrian Bachtold
Host Institution (HI) FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Call Details Advanced Grant (AdG), PE3, ERC-2015-AdG
Summary Mechanical resonators based on carbon nanotubes are truly exceptional sensors of mass and force. In the last years, my group revealed these outstanding figures of merit of nanotube resonators. Here, the project NaTuRe will take advantage of these sensing capabilities to study physical phenomena in fascinating regimes that have not been explored thus far. Specifically, I will address three directions with major scientific interests:
1- I propose to perform electron spin resonance (ESR) measurements on single molecules using nanotube resonators. The goal is to see whether nature can provide molecular electronic spins endowed with long dephasing time. For this, we will measure molecular spins in a regime where the magnetic noise of the environment is reduced to an unprecedented level. In case of success, this work could open avenues in quantum science by allowing experiments not possible with the electronic spins of nitrogen-vacancy centres in diamond.
2- My team will carry out nuclear magnetic resonance (NMR) measurements on single nuclear spins. We will also perform magnetic-resonance force microscopy in order to image these individual nuclear spins. Achieving the objectives proposed here will be an unprecedented success in magnetic resonance imaging (MRI).
3- NaTuRe proposes a completely new experimental approach to investigate superfluidity. We will use a nanotube mechanical resonator to probe the superfluidity properties of helium-4 layers adsorbed onto the suspended nanotube. Our experimental approach will allow us to study various quantum phenomena in superfluidity of considerable interest and from a radically new perspective.
NaTuRe is a highly-interdisciplinary project with possible implications in quantum science, opto-mechanics, nano-science, structural biology, and low-temperature physics.
Summary
Mechanical resonators based on carbon nanotubes are truly exceptional sensors of mass and force. In the last years, my group revealed these outstanding figures of merit of nanotube resonators. Here, the project NaTuRe will take advantage of these sensing capabilities to study physical phenomena in fascinating regimes that have not been explored thus far. Specifically, I will address three directions with major scientific interests:
1- I propose to perform electron spin resonance (ESR) measurements on single molecules using nanotube resonators. The goal is to see whether nature can provide molecular electronic spins endowed with long dephasing time. For this, we will measure molecular spins in a regime where the magnetic noise of the environment is reduced to an unprecedented level. In case of success, this work could open avenues in quantum science by allowing experiments not possible with the electronic spins of nitrogen-vacancy centres in diamond.
2- My team will carry out nuclear magnetic resonance (NMR) measurements on single nuclear spins. We will also perform magnetic-resonance force microscopy in order to image these individual nuclear spins. Achieving the objectives proposed here will be an unprecedented success in magnetic resonance imaging (MRI).
3- NaTuRe proposes a completely new experimental approach to investigate superfluidity. We will use a nanotube mechanical resonator to probe the superfluidity properties of helium-4 layers adsorbed onto the suspended nanotube. Our experimental approach will allow us to study various quantum phenomena in superfluidity of considerable interest and from a radically new perspective.
NaTuRe is a highly-interdisciplinary project with possible implications in quantum science, opto-mechanics, nano-science, structural biology, and low-temperature physics.
Max ERC Funding
2 503 459 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym NetMoDEzyme
Project Network models for the computational design of proficient enzymes
Researcher (PI) Silvia Osuna Oliveras
Host Institution (HI) UNIVERSITAT DE GIRONA
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Billions of years of evolution have made enzymes superb catalysts capable of accelerating reactions by several orders of magnitude. The underlying physical principles of their extraordinary catalytic power still remains highly debated, which makes the alteration of natural enzyme activities towards synthetically useful targets a tremendous challenge for modern chemical biology. The routine design of enzymes will, however, have large socio-economic benefits, as because of the enzymatic advantages the production costs of many drugs will be reduced and will allow industries to use environmentally friendly alternatives. The goal of this project is to make the routine design of proficient enzymes possible. Current computational and experimental approaches are able to confer natural enzymes new functionalities but are economically unviable and the catalytic efficiencies lag far behind their natural counterparts. The groundbreaking nature of NetMoDEzyme relies on the application of network models to reduce the complexity of the enzyme design paradigm and completely reformulate previous computational design approaches. The new protocol proposed accurately characterizes the enzyme conformational dynamics and customizes the included mutations by exploiting the correlated movement of the enzyme active site residues with distal regions. The guidelines for mutation are withdrawn from the costly directed evolution experimental technique, and the most proficient enzymes are easily identified via chemoinformatic models. The new strategy will be applied to develop proficient enzymes for the synthesis of enantiomerically pure β-blocker drugs for treating cardiovascular problems at a reduced cost. The experimental assays of our computational predictions will finally elucidate the potential of this genuinely new approach for mimicking Nature’s rules of evolution.
Summary
Billions of years of evolution have made enzymes superb catalysts capable of accelerating reactions by several orders of magnitude. The underlying physical principles of their extraordinary catalytic power still remains highly debated, which makes the alteration of natural enzyme activities towards synthetically useful targets a tremendous challenge for modern chemical biology. The routine design of enzymes will, however, have large socio-economic benefits, as because of the enzymatic advantages the production costs of many drugs will be reduced and will allow industries to use environmentally friendly alternatives. The goal of this project is to make the routine design of proficient enzymes possible. Current computational and experimental approaches are able to confer natural enzymes new functionalities but are economically unviable and the catalytic efficiencies lag far behind their natural counterparts. The groundbreaking nature of NetMoDEzyme relies on the application of network models to reduce the complexity of the enzyme design paradigm and completely reformulate previous computational design approaches. The new protocol proposed accurately characterizes the enzyme conformational dynamics and customizes the included mutations by exploiting the correlated movement of the enzyme active site residues with distal regions. The guidelines for mutation are withdrawn from the costly directed evolution experimental technique, and the most proficient enzymes are easily identified via chemoinformatic models. The new strategy will be applied to develop proficient enzymes for the synthesis of enantiomerically pure β-blocker drugs for treating cardiovascular problems at a reduced cost. The experimental assays of our computational predictions will finally elucidate the potential of this genuinely new approach for mimicking Nature’s rules of evolution.
Max ERC Funding
1 445 588 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym No-LIMIT
Project Boosting Photovoltaic Performance by the Synergistic Interaction of Halide Perovskites and Semiconductor Quantum Dots
Researcher (PI) Iván MORA SERÓ
Host Institution (HI) UNIVERSITAT JAUME I DE CASTELLON
Call Details Consolidator Grant (CoG), PE4, ERC-2016-COG
Summary Photovoltaic conversion has the extraordinary property of transforming the solar energy directly into electric power. However, the available electrical power is known to be severely limited by the so-called Shockley-Queisser (SQ) photoconversion limit. The maximum efficiency for a single absorber is limited as photons with energy lower than the bandgap (BG) cannot be absorbed, and just an energy equivalent to the BG can be used for photons with higher energy than the BG, due to thermalization. Tandem cells have overcome this SQ limit upon exploiting complex and expensive configurations. Alternative approaches, even with higher potentiality, as Intermediate Bandgap Solar Cells (IBSCs) have not reached the expected performance mainly due to the limitations introduced by the monocrystalline matrix. The incorporation of quantum dots (QD) to create the IB produces layer strain and defects that limit the cell performance. No-LIMIT proposes to revamp IBSCs concept, using polycrystalline halide perovskites (HP) host matrix in order to take benefit from the strain relaxation at polycrystalline materials and from HP benign defect physics. HPs show an outstanding performance even when they are grown in a porous structure, indicating that their excellent transport and recombination properties are preserved with embedded materials. No-LIMIT will exploit this potentiality by using the states of embedded QD as IB in IBSC with HP matrix. The project will focus on the preparation of HPs-QD systems with enhanced light collection efficiency preserving charge transport, recombination and stability. No-LIMIT will study the properties and interactions of the HP and QD materials developed, as well as injection, recombination and transport properties in the coupled system. The combination of these strategies will build a ground-breaking synergistic system able to break the SQ limit. The achievements of IBSC, together with the intermediate steps, will have a colossal impact on photovoltaics
Summary
Photovoltaic conversion has the extraordinary property of transforming the solar energy directly into electric power. However, the available electrical power is known to be severely limited by the so-called Shockley-Queisser (SQ) photoconversion limit. The maximum efficiency for a single absorber is limited as photons with energy lower than the bandgap (BG) cannot be absorbed, and just an energy equivalent to the BG can be used for photons with higher energy than the BG, due to thermalization. Tandem cells have overcome this SQ limit upon exploiting complex and expensive configurations. Alternative approaches, even with higher potentiality, as Intermediate Bandgap Solar Cells (IBSCs) have not reached the expected performance mainly due to the limitations introduced by the monocrystalline matrix. The incorporation of quantum dots (QD) to create the IB produces layer strain and defects that limit the cell performance. No-LIMIT proposes to revamp IBSCs concept, using polycrystalline halide perovskites (HP) host matrix in order to take benefit from the strain relaxation at polycrystalline materials and from HP benign defect physics. HPs show an outstanding performance even when they are grown in a porous structure, indicating that their excellent transport and recombination properties are preserved with embedded materials. No-LIMIT will exploit this potentiality by using the states of embedded QD as IB in IBSC with HP matrix. The project will focus on the preparation of HPs-QD systems with enhanced light collection efficiency preserving charge transport, recombination and stability. No-LIMIT will study the properties and interactions of the HP and QD materials developed, as well as injection, recombination and transport properties in the coupled system. The combination of these strategies will build a ground-breaking synergistic system able to break the SQ limit. The achievements of IBSC, together with the intermediate steps, will have a colossal impact on photovoltaics
Max ERC Funding
1 999 072 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym NOVGRAPHENE
Project Novel uses for graphene
Researcher (PI) Francisco Guinea Lopez
Host Institution (HI) FUNDACION IMDEA NANOCIENCIA
Call Details Advanced Grant (AdG), PE3, ERC-2011-ADG_20110209
Summary "Models for novel uses of graphene, not feasible in other materials, will be developed. Emphasis will be made on properties unique to graphene, like its extremely high stiffness, flexibility, tunable metallic features, and very low mass density. Novel applications will be studied in the areas of i) structural deformations and modulation of electronic properties, ii) spin manipulation, and iii) optoelectronics and plasmonics."
Summary
"Models for novel uses of graphene, not feasible in other materials, will be developed. Emphasis will be made on properties unique to graphene, like its extremely high stiffness, flexibility, tunable metallic features, and very low mass density. Novel applications will be studied in the areas of i) structural deformations and modulation of electronic properties, ii) spin manipulation, and iii) optoelectronics and plasmonics."
Max ERC Funding
991 691 €
Duration
Start date: 2012-05-01, End date: 2017-04-30
Project acronym ORGA-NAUT
Project Exploring Chemical Reactivity with Organocatalysis
Researcher (PI) Paolo Melchiorre
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary The proposed research seeks to redefine the synthetic potential of a fundamental organic transformation: the functionalisation of carbonyl compounds. Today, synthetic chemists can address even the most daunting of challenges connected with the asymmetric catalytic functionalisation of carbonyl compounds at their alpha and beta positions. In contrast, there are no known general strategies for the corresponding direct, catalytic and enantioselective transformation to a carbonyl group at the gamma position.
By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for exploring unprecedented transformations. This would strengthen the chemistry toolbox to better face the challenges of modern organic chemistry.
I will proceed by combining asymmetric aminocatalysis (a versatile chemical strategy whose potential has not yet been fully explored) with photoredox catalysis driven by visible light. This will provide access to open-shell radical species, which participate in bond constructions that are unavailable using amine organocatalysis alone. Since electron-deficient radicals are known to rapidly react with pi-rich olefins to forge even the most elusive C-C bonds, mild and catalytic approaches to accessing these reaction manifolds offer desirable opportunities for designing new gamma-functionalisations of carbonyl compounds. Developing an innovative system based on a chiral organic catalyst that efficiently harnesses the energy of solar radiation is in line with the European approach to attaining Sustainable Chemistry, one of the central scientific goals of the 21st Century.
This proposal challenges the current paradigms for stereoselective functionalisation by providing a template for directly functionalising unmodified carbonyl compounds at their gamma positions, expanding the way chemists think about making chiral molecules
Summary
The proposed research seeks to redefine the synthetic potential of a fundamental organic transformation: the functionalisation of carbonyl compounds. Today, synthetic chemists can address even the most daunting of challenges connected with the asymmetric catalytic functionalisation of carbonyl compounds at their alpha and beta positions. In contrast, there are no known general strategies for the corresponding direct, catalytic and enantioselective transformation to a carbonyl group at the gamma position.
By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for exploring unprecedented transformations. This would strengthen the chemistry toolbox to better face the challenges of modern organic chemistry.
I will proceed by combining asymmetric aminocatalysis (a versatile chemical strategy whose potential has not yet been fully explored) with photoredox catalysis driven by visible light. This will provide access to open-shell radical species, which participate in bond constructions that are unavailable using amine organocatalysis alone. Since electron-deficient radicals are known to rapidly react with pi-rich olefins to forge even the most elusive C-C bonds, mild and catalytic approaches to accessing these reaction manifolds offer desirable opportunities for designing new gamma-functionalisations of carbonyl compounds. Developing an innovative system based on a chiral organic catalyst that efficiently harnesses the energy of solar radiation is in line with the European approach to attaining Sustainable Chemistry, one of the central scientific goals of the 21st Century.
This proposal challenges the current paradigms for stereoselective functionalisation by providing a template for directly functionalising unmodified carbonyl compounds at their gamma positions, expanding the way chemists think about making chiral molecules
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym PHONOMETA
Project Frontiers in Phononics: Parity-Time Symmetric Phononic Metamaterials
Researcher (PI) Johan CHRISTENSEN
Host Institution (HI) UNIVERSIDAD CARLOS III DE MADRID
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary The boost experienced by acoustic and elastic (phononic) metamaterial research during the past years has been driven by the ability to sculpture the flow of sound waves at will. Thanks to recent developments at the frontiers of phononic metamaterials it can be identified that active phononic control is at the cutting edge of the current research on phononic metamaterials. Introducing piezoelectric semiconductors as a material platform to discover new avenues in wave physics will have the potential to open horizons of opportunities in science of acoustic wave control. Electrically biased piezoelectric semiconductors are non-reciprocal by nature, produce mechanical gain and are highly tunable.
The aim is to explore novel properties of sound and the ability to design Parity-Time (PT) symmetric systems that define a consistent unitary extension of quantum mechanics. Through cunningly contrived piezoelectric media sculpturing balanced loss and gain units, these structures have neither parity symmetry nor time-reversal symmetry, but are nevertheless symmetric in the product of both. PHONOMETA is inspired and driven by these common notions of quantum mechanics that I wish to translate into classical acoustics with unprecedented knowledge for the case of sound.
I expect that the successful realization of PHONOMETA has the potential to revolutionize acoustics in our daily life. Environmental and ambient noise stem from multiple scattering and reflections of sound in our surrounding. The extraordinary properties of PT acoustic metamaterials have the groundbreaking potential to push forward physical acoustics with new paradigms to design tunable diode-like behaviour with zero reflections, which is applicable for noise pollution mitigation. Also I anticipate to impact the progress on invisibility cloaks by introducing PT symmetry based acoustic stealth coatings for hiding submarines.
Summary
The boost experienced by acoustic and elastic (phononic) metamaterial research during the past years has been driven by the ability to sculpture the flow of sound waves at will. Thanks to recent developments at the frontiers of phononic metamaterials it can be identified that active phononic control is at the cutting edge of the current research on phononic metamaterials. Introducing piezoelectric semiconductors as a material platform to discover new avenues in wave physics will have the potential to open horizons of opportunities in science of acoustic wave control. Electrically biased piezoelectric semiconductors are non-reciprocal by nature, produce mechanical gain and are highly tunable.
The aim is to explore novel properties of sound and the ability to design Parity-Time (PT) symmetric systems that define a consistent unitary extension of quantum mechanics. Through cunningly contrived piezoelectric media sculpturing balanced loss and gain units, these structures have neither parity symmetry nor time-reversal symmetry, but are nevertheless symmetric in the product of both. PHONOMETA is inspired and driven by these common notions of quantum mechanics that I wish to translate into classical acoustics with unprecedented knowledge for the case of sound.
I expect that the successful realization of PHONOMETA has the potential to revolutionize acoustics in our daily life. Environmental and ambient noise stem from multiple scattering and reflections of sound in our surrounding. The extraordinary properties of PT acoustic metamaterials have the groundbreaking potential to push forward physical acoustics with new paradigms to design tunable diode-like behaviour with zero reflections, which is applicable for noise pollution mitigation. Also I anticipate to impact the progress on invisibility cloaks by introducing PT symmetry based acoustic stealth coatings for hiding submarines.
Max ERC Funding
1 325 158 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym PLASMAQUO
Project Development of plasmonic quorum sensors for understanding bacterial-eukaryotic cell relations
Researcher (PI) Luis Manuel Liz Marzán
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Call Details Advanced Grant (AdG), PE5, ERC-2010-AdG_20100224
Summary This proposal aims at the development of novel nanostructured materials based on crystalline assemblies of anisotropic plasmonic (gold/silver) nanoparticles, to be used for the surface enhanced Raman scattering (SERS) detection of quorum sensing (QS) signaling molecules, and to the demonstration of applications of such materials to monitor population kinetics in bacterial colonies and the determination of the interaction mechanisms between mixed colonies and their manipulation through external parameters. This will involve a first stage related to the careful design of the most appropriate nanoparticle morphology and composition, as well as an understanding of their specific assembly processes (both on substrates and in solution), so that the collective plasmonic response will be optimized towards the enhancement of the Raman signal of the probe molecular codes. Coating of the nanoparticle supercrystals with a mesoporous layer will be required to protect them against contact with bacteria and cells, while permitting contact with the QS signaling molecules. Ultimately, when the sensing system has been optimized and its performance demonstrated for monitoring of QS signals and colony growth, two final and important goals will be pursued. First, the interaction between mixed colonies (bacteria-bacteria and bacteria-eukaryotic cell) will be monitored in order to get information about synergic or antagonist (toxicity) QS mechanisms during the growth and proliferation of different bacteria and interspecies. This goal will permit the design of in vitro experiments where a bacterial strain may be manipulated by means of external introduction of the appropriate QS signaling molecules. Finally, the major challenge will be the practical demonstration of the ability of these new materials in this particular configuration for understanding and manipulating the growth and communication of different types of prokaryotic and peukaryotic cells.
Summary
This proposal aims at the development of novel nanostructured materials based on crystalline assemblies of anisotropic plasmonic (gold/silver) nanoparticles, to be used for the surface enhanced Raman scattering (SERS) detection of quorum sensing (QS) signaling molecules, and to the demonstration of applications of such materials to monitor population kinetics in bacterial colonies and the determination of the interaction mechanisms between mixed colonies and their manipulation through external parameters. This will involve a first stage related to the careful design of the most appropriate nanoparticle morphology and composition, as well as an understanding of their specific assembly processes (both on substrates and in solution), so that the collective plasmonic response will be optimized towards the enhancement of the Raman signal of the probe molecular codes. Coating of the nanoparticle supercrystals with a mesoporous layer will be required to protect them against contact with bacteria and cells, while permitting contact with the QS signaling molecules. Ultimately, when the sensing system has been optimized and its performance demonstrated for monitoring of QS signals and colony growth, two final and important goals will be pursued. First, the interaction between mixed colonies (bacteria-bacteria and bacteria-eukaryotic cell) will be monitored in order to get information about synergic or antagonist (toxicity) QS mechanisms during the growth and proliferation of different bacteria and interspecies. This goal will permit the design of in vitro experiments where a bacterial strain may be manipulated by means of external introduction of the appropriate QS signaling molecules. Finally, the major challenge will be the practical demonstration of the ability of these new materials in this particular configuration for understanding and manipulating the growth and communication of different types of prokaryotic and peukaryotic cells.
Max ERC Funding
2 247 630 €
Duration
Start date: 2011-03-01, End date: 2017-02-28
Project acronym PLASMONANOQUANTA
Project "Frontiers in Plasmonics: Transformation Optics, Quantum and Non-linear phenomena"
Researcher (PI) Francisco José Garcia Vidal
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Advanced Grant (AdG), PE3, ERC-2011-ADG_20110209
Summary "The overall objective of this proposal is to work in depth along three ground-breaking lines of research that are at the cutting edge of the current research in Plasmonics. These three subjects have strong overlap and are:
1) Non-linear phenomena and Plasmonic lasing: the introduction of optical-gain media into plasmonic waveguides has proven to be a feasible way to overcome the inherent losses within the metal. In order to reveal the physics behind this phenomenon, we intend to develop a new ab-initio theoretical framework that should combine the resolution of classical Maxwell’s equations with a quantum-mechanical treatment of the molecules forming the optical-gain medium. Within this formalism we also aim to analyze in depth very recent proposals of plasmon-based nano-lasers, the design of active devices based on surface plasmons and the use of optical-gain media in metallic metamaterials.
2) Transformation Optics for Plasmonics: we plan to apply the idea of Transformation Optics in connection with the concept of Metamaterials to devise new strategies for molding the propagation of surface plasmons in nanostructured metal surfaces. Additionally, we will use the Transformation Optics formalism to treat quasi-analytically non-local effects in plasmonic structures.
3) Quantum Plasmonics: several aspects of this new line of research will be tackled. Among others, fundamental studies of the coherence of surface plasmons that propagate along different metal waveguides after being generated by quantum emitters. A very promising line of research to explore will be plasmon-mediated interaction between qubits, taking advantage of the quasi-one-dimensional character of plasmonic waveguides. Strong-coupling phenomena between molecules and surface plasmons and the design of practical scenarios in which entanglement of surface plasmons could take place will be also addressed. We also plan to study how to generate surface plasmons with orbital angular momentum."
Summary
"The overall objective of this proposal is to work in depth along three ground-breaking lines of research that are at the cutting edge of the current research in Plasmonics. These three subjects have strong overlap and are:
1) Non-linear phenomena and Plasmonic lasing: the introduction of optical-gain media into plasmonic waveguides has proven to be a feasible way to overcome the inherent losses within the metal. In order to reveal the physics behind this phenomenon, we intend to develop a new ab-initio theoretical framework that should combine the resolution of classical Maxwell’s equations with a quantum-mechanical treatment of the molecules forming the optical-gain medium. Within this formalism we also aim to analyze in depth very recent proposals of plasmon-based nano-lasers, the design of active devices based on surface plasmons and the use of optical-gain media in metallic metamaterials.
2) Transformation Optics for Plasmonics: we plan to apply the idea of Transformation Optics in connection with the concept of Metamaterials to devise new strategies for molding the propagation of surface plasmons in nanostructured metal surfaces. Additionally, we will use the Transformation Optics formalism to treat quasi-analytically non-local effects in plasmonic structures.
3) Quantum Plasmonics: several aspects of this new line of research will be tackled. Among others, fundamental studies of the coherence of surface plasmons that propagate along different metal waveguides after being generated by quantum emitters. A very promising line of research to explore will be plasmon-mediated interaction between qubits, taking advantage of the quasi-one-dimensional character of plasmonic waveguides. Strong-coupling phenomena between molecules and surface plasmons and the design of practical scenarios in which entanglement of surface plasmons could take place will be also addressed. We also plan to study how to generate surface plasmons with orbital angular momentum."
Max ERC Funding
1 347 600 €
Duration
Start date: 2012-04-01, End date: 2017-03-31