Project acronym ADJUV-ANT VACCINES
Project Elucidating the Molecular Mechanisms of Synthetic Saponin Adjuvants and Development of Novel Self-Adjuvanting Vaccines
Researcher (PI) Alberto FERNANDEZ TEJADA
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Summary
The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Max ERC Funding
1 499 219 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym BIO2CHEM-D
Project Biomass to chemicals: Catalysis design from first principles for a sustainable chemical industry
Researcher (PI) Nuria Lopez
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Summary
The use of renewable feedstocks by the chemical industry is fundamental due to both the depletion of fossil
resources and the increasing pressure of environmental concerns. Biomass can act as a sustainable source of
organic industrial chemicals; however, the establishment of a renewable chemical industry that is
economically competitive with the present oil-based one requires the development of new processes to
convert biomass-derived compounds into useful industrial materials following the principles of green
chemistry. To achieve these goals, developments in several fields including heterogeneous catalysis are
needed. One of the ways to accelerate the discovery of new potentially active, selective and stable catalysts is
the massive use of computational chemistry. Recent advances have demonstrated that Density Functional
Theory coupled to ab initio thermodynamics, transition state theory and microkinetic analysis can provide a
full view of the catalytic phenomena.
The aim of the present project is thus to employ these well-tested computational techniques to the
development of a theoretical framework that can accelerate the identification of new catalysts for the
conversion of biomass derived target compounds into useful chemicals. Since compared to petroleum-based
materials-biomass derived ones are multifuncionalized, the search for new catalytic materials and processes
has a strong requirement in the selectivity of the chemical transformations. The main challenges in the
project are related to the high functionalization of the molecules, their liquid nature and the large number of
potentially competitive reaction paths. The requirements of specificity and selectivity in the chemical
transformations while keeping a reasonably flexible framework constitute a major objective. The work will
be divided in three main work packages, one devoted to the properties of small molecules or fragments
containing a single functional group; the second addresses competition in multiple functionalized molecules;
and third is dedicated to the specific transformations of two molecules that have already been identified as
potential platform generators. The goal is to identify suitable candidates that could be synthetized and tested
in the Institute facilities.
Max ERC Funding
1 496 200 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym chem-fs-MOF
Project Chemical Engineering of Functional Stable Metal-Organic Frameworks: Porous Crystals and Thin Film Devices
Researcher (PI) Carlos MARTI-GASTALDO
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Metal-Organic-Frameworks (MOFs) offer appealing advantages over classical solids from combination of high surface areas with the crystallinity of inorganic materials and the synthetic versatility (unlimited combination of metals and linkers for fine tuning of properties) and processability of organic materials. Provided chemical stability, I expect combination of porosity with manipulable electrical and optical properties to open a new world of possibilities, with MOFs playing an emerging role in fields of key environmental value like photovoltaics, photocatalysis or electrocatalysis. The conventional insulating character of MOFs and their poor chemical stability (only a minimum fraction are hydrolytically stable) are arguably the two key limitations hindering further development in this context.
With chem-fs-MOF I expect to deliver:
1. New synthetic routes specifically designed for producing new, hydrolytically stable Fe(III) and Ti(IV)-MOFs (new synthetic platforms for new materials).
2. More advanced crystalline materials to feature tunable function by chemical manipulation of MOF’s optical/electrical properties and pore activity (function-led chemical engineering).
3. High-quality ultrathin films, reliant on the transfer of single-layers, alongside establishing the techniques required for evaluating their electric properties (key to device integration). Recent works on graphene and layered dichalcogenides anticipate the benefits of nanostructuration for more efficient optoelectronic devices. Notwithstanding great potential, this possibility remains still unexplored for MOFs.
Overall, I seek to exploit MOFs’ unparalleled chemical/structural flexibility to produce advanced crystalline materials that combine hydrolytical stability and tunable performance to be used in environmentally relevant applications like visible light photocatalysis. This is an emerging research front that holds great potential for influencing future R&D in Chemistry and Materials Science.
Summary
Metal-Organic-Frameworks (MOFs) offer appealing advantages over classical solids from combination of high surface areas with the crystallinity of inorganic materials and the synthetic versatility (unlimited combination of metals and linkers for fine tuning of properties) and processability of organic materials. Provided chemical stability, I expect combination of porosity with manipulable electrical and optical properties to open a new world of possibilities, with MOFs playing an emerging role in fields of key environmental value like photovoltaics, photocatalysis or electrocatalysis. The conventional insulating character of MOFs and their poor chemical stability (only a minimum fraction are hydrolytically stable) are arguably the two key limitations hindering further development in this context.
With chem-fs-MOF I expect to deliver:
1. New synthetic routes specifically designed for producing new, hydrolytically stable Fe(III) and Ti(IV)-MOFs (new synthetic platforms for new materials).
2. More advanced crystalline materials to feature tunable function by chemical manipulation of MOF’s optical/electrical properties and pore activity (function-led chemical engineering).
3. High-quality ultrathin films, reliant on the transfer of single-layers, alongside establishing the techniques required for evaluating their electric properties (key to device integration). Recent works on graphene and layered dichalcogenides anticipate the benefits of nanostructuration for more efficient optoelectronic devices. Notwithstanding great potential, this possibility remains still unexplored for MOFs.
Overall, I seek to exploit MOFs’ unparalleled chemical/structural flexibility to produce advanced crystalline materials that combine hydrolytical stability and tunable performance to be used in environmentally relevant applications like visible light photocatalysis. This is an emerging research front that holds great potential for influencing future R&D in Chemistry and Materials Science.
Max ERC Funding
1 527 351 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym CHEMCOMP
Project Building-up Chemical Complexity
into Multifunctional Molecule-based Hybrid Materials
Researcher (PI) Jose Ramon Galan Mascaros
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary Molecular sciences offer unparalleled opportunities for the development of tailor-made materials. By chemical design, molecules with the desired features can be prepared and incorporated into hybrid systems to yield molecule-based materials with novel chemical and/or physical properties. The CHEMCOMP project aims to develop new hybrid materials targeting the study of new physical phenomena that have already been theoretically predicted or experimentally hinted. The main goals will be:
i) Molecules with memory: Memory effect at the molecular scale is of great interest because it represents the size limit in the miniaturization of information storage media. My goal will be to develop spin crossover molecules with bulk-like hysteretic behavior where the switching between the low spin ground state and the high spin metastable state can be controlled through external stimuli.
ii) Bistable organic conductors: Bistable molecules could also be embedded into hybrid organic conductors to induce structural phase transitions. This strategy will allow for the transport properties to be controlled through external stimuli in unprecedented switchable conducting media.
iii) Hybrid conducting magnets: Combination of magnetism and electrical conductivity has given rise to new phenomena in the past, such as spin glass behavior or giant magnetoresistance. We propose to incorporate Single Molecule Magnets (molecules with magnet-like behavior) into organic (super)conductors to understand and optimize the synergy between these two physical properties.
iv) Chiral magnets and conductors: New phenomena is expected to appear in optically active media. Experimental evidence for the so-called MagnetoChiral Dichroism has already been found. Electrical Magnetochiral Anisotropy has been predicted. I will develop systematic strategies for the preparation of hybrid chiral materials to understand and optimize the synergy between chirality and bulk physical properties.
Summary
Molecular sciences offer unparalleled opportunities for the development of tailor-made materials. By chemical design, molecules with the desired features can be prepared and incorporated into hybrid systems to yield molecule-based materials with novel chemical and/or physical properties. The CHEMCOMP project aims to develop new hybrid materials targeting the study of new physical phenomena that have already been theoretically predicted or experimentally hinted. The main goals will be:
i) Molecules with memory: Memory effect at the molecular scale is of great interest because it represents the size limit in the miniaturization of information storage media. My goal will be to develop spin crossover molecules with bulk-like hysteretic behavior where the switching between the low spin ground state and the high spin metastable state can be controlled through external stimuli.
ii) Bistable organic conductors: Bistable molecules could also be embedded into hybrid organic conductors to induce structural phase transitions. This strategy will allow for the transport properties to be controlled through external stimuli in unprecedented switchable conducting media.
iii) Hybrid conducting magnets: Combination of magnetism and electrical conductivity has given rise to new phenomena in the past, such as spin glass behavior or giant magnetoresistance. We propose to incorporate Single Molecule Magnets (molecules with magnet-like behavior) into organic (super)conductors to understand and optimize the synergy between these two physical properties.
iv) Chiral magnets and conductors: New phenomena is expected to appear in optically active media. Experimental evidence for the so-called MagnetoChiral Dichroism has already been found. Electrical Magnetochiral Anisotropy has been predicted. I will develop systematic strategies for the preparation of hybrid chiral materials to understand and optimize the synergy between chirality and bulk physical properties.
Max ERC Funding
1 940 396 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym CoopCat
Project Cooperative Catalysis: Using Interdisciplinary Chemical Systems to Develop New Cooperative Catalysts
Researcher (PI) Jesus CAMPOS MANZANO
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary Catalysis, a multidisciplinary science at the heart of many industrial processes, is crucial to deliver future growth and minimize anthropogenic environmental impact, thus being critical to our quality of life. Thus, the development and fundamental understanding of innovative new catalyst systems has clear, direct and long-term benefits to the chemical manufacturing sector and to the broader knowledge-based economy.
In this ERC project I will develop novel innovative cooperative catalysts using interdisciplinary chemical systems based on main group elements, transition metals and molecular clusters to achieve better efficiency and improve chemical scope and sustainability of key chemical transformations.
This will be achieved through 3 complementary and original strategies based on catalytic cooperation: (i) Transition-Metal Frustrated Lewis Pairs (TM-FLPs); (ii) hybrid systems combining low-valent heavier main group elements with transition metals (Hybrid TM/MGs); and (iii) intercluster compounds (ICCs) as versatile heterogeneized materials for Green Catalysis.
These systems, of high synthetic feasibility, combine fundamental concepts from independent areas, e.g. FLPs and low-valent heavier main group elements with transition metal chemistry, and homogeneous with heterogeneous catalysis. The overall approach will be pivotal in discovering novel reactions that rely on the activation of otherwise unreactive substrates. The experience and knowledge gained from (i)-(iii) will be used to inform the design of a second generation of ICC materials in which at least one of the nanoscale bricks is based on polymetallic TM-FLPs or Hybrid TM/MG systems.
Delivering ground-breaking new fundamental science, this pioneering project will lay the foundation for future broad ranging benefits to a number of EU priority areas dependant on innovations in catalysis: innovative and sustainable future energy systems, solar technologies, sustainable chemistry, manufacturing, and healthcare.
Summary
Catalysis, a multidisciplinary science at the heart of many industrial processes, is crucial to deliver future growth and minimize anthropogenic environmental impact, thus being critical to our quality of life. Thus, the development and fundamental understanding of innovative new catalyst systems has clear, direct and long-term benefits to the chemical manufacturing sector and to the broader knowledge-based economy.
In this ERC project I will develop novel innovative cooperative catalysts using interdisciplinary chemical systems based on main group elements, transition metals and molecular clusters to achieve better efficiency and improve chemical scope and sustainability of key chemical transformations.
This will be achieved through 3 complementary and original strategies based on catalytic cooperation: (i) Transition-Metal Frustrated Lewis Pairs (TM-FLPs); (ii) hybrid systems combining low-valent heavier main group elements with transition metals (Hybrid TM/MGs); and (iii) intercluster compounds (ICCs) as versatile heterogeneized materials for Green Catalysis.
These systems, of high synthetic feasibility, combine fundamental concepts from independent areas, e.g. FLPs and low-valent heavier main group elements with transition metal chemistry, and homogeneous with heterogeneous catalysis. The overall approach will be pivotal in discovering novel reactions that rely on the activation of otherwise unreactive substrates. The experience and knowledge gained from (i)-(iii) will be used to inform the design of a second generation of ICC materials in which at least one of the nanoscale bricks is based on polymetallic TM-FLPs or Hybrid TM/MG systems.
Delivering ground-breaking new fundamental science, this pioneering project will lay the foundation for future broad ranging benefits to a number of EU priority areas dependant on innovations in catalysis: innovative and sustainable future energy systems, solar technologies, sustainable chemistry, manufacturing, and healthcare.
Max ERC Funding
1 445 000 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym DAUBOR
Project Design and Applications of Unconventional Borylation Reactions
Researcher (PI) Mariola Tortosa Manzanares
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE5, ERC-2013-StG
Summary "Boronic esters are versatile synthetic intermediates for the preparation of a wide range of organic molecules. The recent approval of the anti-cancer agent Velcade, the first boronic acid containing drug commercialized, further confirms the status of boronic acid derivatives as an important class of compounds in chemistry and medicine. This proposal aims to develop three new unconventional approaches for the synthesis of boronic esters.
The first one is based on the use of copper (low price and low toxicity) to promote unknown borylation reactions. Our method is an important step forward in that it proceeds using catalytic quantities of copper and allows the formation of a C-B bond along with a C-C or a C-N bond in a single catalytic cycle. Additionally, a copper-catalyzed borylation reaction is proposed as the key tool to solve the total synthesis of nigricanoside A, a potent antimitotic agent. The total synthesis of this natural product could have an impact in cancer research similar to that found for taxol or epothilones.
The second approach deals with the development of borylation reactions under metal-free conditions. I propose to use bifunctional catalysts to promote the dual activation of B-B bonds and suitable electrophiles. This approach constitutes an unconventional way to synthesize boronic esters and has no precedent in the literature.
Finally, the third section of this proposal branches into riskier territory. I propose to use Lewis-base/diboron adducts to generate organoboryl radicals. If successful, the potential impact will be very high and will certainly open unexplored ways in boron chemistry.
The copper-catalyzed, metal-free, and radical approaches proceed by mechanistically distinct pathways and can give rise to complementary reactivity and selectivity partners. New findings in these areas would represent a significant step in the industrial and academic synthesis of boronic esters."
Summary
"Boronic esters are versatile synthetic intermediates for the preparation of a wide range of organic molecules. The recent approval of the anti-cancer agent Velcade, the first boronic acid containing drug commercialized, further confirms the status of boronic acid derivatives as an important class of compounds in chemistry and medicine. This proposal aims to develop three new unconventional approaches for the synthesis of boronic esters.
The first one is based on the use of copper (low price and low toxicity) to promote unknown borylation reactions. Our method is an important step forward in that it proceeds using catalytic quantities of copper and allows the formation of a C-B bond along with a C-C or a C-N bond in a single catalytic cycle. Additionally, a copper-catalyzed borylation reaction is proposed as the key tool to solve the total synthesis of nigricanoside A, a potent antimitotic agent. The total synthesis of this natural product could have an impact in cancer research similar to that found for taxol or epothilones.
The second approach deals with the development of borylation reactions under metal-free conditions. I propose to use bifunctional catalysts to promote the dual activation of B-B bonds and suitable electrophiles. This approach constitutes an unconventional way to synthesize boronic esters and has no precedent in the literature.
Finally, the third section of this proposal branches into riskier territory. I propose to use Lewis-base/diboron adducts to generate organoboryl radicals. If successful, the potential impact will be very high and will certainly open unexplored ways in boron chemistry.
The copper-catalyzed, metal-free, and radical approaches proceed by mechanistically distinct pathways and can give rise to complementary reactivity and selectivity partners. New findings in these areas would represent a significant step in the industrial and academic synthesis of boronic esters."
Max ERC Funding
1 495 200 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym DYNAP
Project Dynamic Penetrating Peptide Adaptamers
Researcher (PI) Javier Montenegro Garcia
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE5, ERC-2015-STG
Summary The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the synthesis of self-adaptive penetrating peptides (adaptamers) for targeted delivery.
It is known that the recently developed therapeutic technologies (i.e. gene therapy, chemotherapy, hyperthermia, etc.) cannot reach their expected potential due to limitations in the current delivery strategies, which hinder the efficient targeting of the appropriate tissues, cells and organelles. Despite the enormous therapeutic potential of short penetrating peptides, these molecules suffer from drawbacks such as toxicity, instability to protease digestion and lack of specificity.
Dynamic covalent chemistry has significant synthetic advantages. In the proposed research, peptide scaffolds with clickable reversible groups (e.g. hydrazide) will be conjugated with collections of aldehydes to afford self-adaptive biomimetic transporters, whose secondary structure and penetrating properties will be systematically characterized by biophysical, cell-biology and pattern recognition techniques.
The versatility of dynamic supramolecular “peptide adaptamers” with precisely positioned protein ligands will be explored for multivalent specific recognition, protein transport, cell targeting of drugs and probes and membrane epitoping.
Additionally, we propose to synthesise dynamic and environmentally sensitive fluorescent probes for biocompatible membrane labelling and uptake signalling.
The resulting discoveries of this research will allow the formulation of novel transfecting reagents for gene therapy, selective platforms for drug-delivery and the development of dynamic fluorescent membrane probes. The potential results of this proposal will shake the fields of drug-delivery and non-viral gene transfection and will resolve the limitations of the current approaches.
Summary
The aim of this proposal is to identify, at the molecular level, the minimal topological and structural motifs that govern the membrane translocation of short peptides. A covalent reversible bond strategy will be developed for the synthesis of self-adaptive penetrating peptides (adaptamers) for targeted delivery.
It is known that the recently developed therapeutic technologies (i.e. gene therapy, chemotherapy, hyperthermia, etc.) cannot reach their expected potential due to limitations in the current delivery strategies, which hinder the efficient targeting of the appropriate tissues, cells and organelles. Despite the enormous therapeutic potential of short penetrating peptides, these molecules suffer from drawbacks such as toxicity, instability to protease digestion and lack of specificity.
Dynamic covalent chemistry has significant synthetic advantages. In the proposed research, peptide scaffolds with clickable reversible groups (e.g. hydrazide) will be conjugated with collections of aldehydes to afford self-adaptive biomimetic transporters, whose secondary structure and penetrating properties will be systematically characterized by biophysical, cell-biology and pattern recognition techniques.
The versatility of dynamic supramolecular “peptide adaptamers” with precisely positioned protein ligands will be explored for multivalent specific recognition, protein transport, cell targeting of drugs and probes and membrane epitoping.
Additionally, we propose to synthesise dynamic and environmentally sensitive fluorescent probes for biocompatible membrane labelling and uptake signalling.
The resulting discoveries of this research will allow the formulation of novel transfecting reagents for gene therapy, selective platforms for drug-delivery and the development of dynamic fluorescent membrane probes. The potential results of this proposal will shake the fields of drug-delivery and non-viral gene transfection and will resolve the limitations of the current approaches.
Max ERC Funding
1 492 525 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym E-GAMES
Project Surface Self-Assembled Molecular Electronic Devices: Logic Gates, Memories and Sensors
Researcher (PI) Marta Mas Torrent
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2012-StG_20111012
Summary Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Summary
Organic electronic devices, such as organic field-effect transistors (OFETs), are raising an increasing interest for their potential in large area coverage and low cost applications. Also, the use of single molecules as active electronic components offers great prospects for the miniaturization of devices and for their compatibility with biological systems. Within this framework, e-GAMES goals are:
1) Molecular logic gates for the storage and transmission of magnetic and optical information and for locally controlling surface wettability. The two huge limitations that hinder the application of molecules in logic gates are: i) Fabrication of devices on a solid support, ii) Concatenation of logic gates. I plan to overcome these drawbacks employing self-assembled monolayers of bistable electroactive molecules. These systems could also be used in the fabrication of surfaces with tunable wettability properties, of high interest in microfluidics and for biosensors.
2) Ambipolar organic field-effect transistors with donor-acceptor systems and their exploitation in light, temperature or pressure sensors, and/or memory devices.
Intramolecular electron transfer in organic semiconductors designed for preparing ambipolar OFETs will be explored for the first time. This phenomenon will be exploited for the fabrication of light, pressure or temperature stimuli-responsive OFETs bringing innovative perspectives to the field.
3) Organic/inorganic hybrid devices based on field-effect transistors for sensing environmentally hazardous carbon nanoparticles.
Carbon-based nanoparticles are being increasingly used in many applications despite their recognized toxicity. The grounds for the development of a new generation of nanotechnological low-cost and selective sensors based on transistors functionalized with organic sensing molecular monolayers for the detection of such materials will be developed, contributing towards the improvement of citizens’ safety and environmental preservation.
Max ERC Funding
1 499 675 €
Duration
Start date: 2012-12-01, End date: 2018-09-30
Project acronym ENLIGHTMENT
Project Photonic Electrodes for Enhanced Light Management in Optoelectronic Devices
Researcher (PI) Antonio Agustin Mihi Cervelló
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE5, ERC-2014-STG
Summary Nanostructured dielectric and metallic photonic architectures can concentrate the electric field through resonances, increase the light optical path by strong diffraction and exhibit many other interesting optical phenomena that cannot be achieved with traditional lenses and mirrors. The use of these structures within actual devices will be most beneficial for enhanced light absorption in thin solar cells, photodetectors and to develop new sensors and light emitters. However, emerging optoelectronic devices rely on large area and low cost fabrication routes such as roll to roll or solution processing, to cut manufacturing costs and increase the production throughput. If the exciting properties exhibited by the photonic structures are to be implemented in these devices, then they too have to be processed in a similar fashion as the devices they intend to improve. This research plan is aimed to develop photonic electrodes that will enhance light matter interaction based on wave optics phenomena while being fabricated with techniques fully compatible with today’s mass production approaches, allowing seamless integration of wave optics components in current devices. The objectives of this proposal are: 1) to investigate the fundaments of the enhanced light-matter interaction observed in devices that use wave optics elements. 2) To develop fabrication routes for large area and low cost photonic and plasmonic structures using techniques similar to those employed in industry, so they could be easily incorporated in technologies such as roll to roll. 3) To fabricate prototype solar cells, photodetectors and sensors on top of photonic electrodes, demonstrating improved performance without deterioration of other figures of merit in the device. The results of the research plan will advance the state of the art in nanophotonics structures, providing the path towards a new generation of large-scale and low-cost photonic architectures.
Summary
Nanostructured dielectric and metallic photonic architectures can concentrate the electric field through resonances, increase the light optical path by strong diffraction and exhibit many other interesting optical phenomena that cannot be achieved with traditional lenses and mirrors. The use of these structures within actual devices will be most beneficial for enhanced light absorption in thin solar cells, photodetectors and to develop new sensors and light emitters. However, emerging optoelectronic devices rely on large area and low cost fabrication routes such as roll to roll or solution processing, to cut manufacturing costs and increase the production throughput. If the exciting properties exhibited by the photonic structures are to be implemented in these devices, then they too have to be processed in a similar fashion as the devices they intend to improve. This research plan is aimed to develop photonic electrodes that will enhance light matter interaction based on wave optics phenomena while being fabricated with techniques fully compatible with today’s mass production approaches, allowing seamless integration of wave optics components in current devices. The objectives of this proposal are: 1) to investigate the fundaments of the enhanced light-matter interaction observed in devices that use wave optics elements. 2) To develop fabrication routes for large area and low cost photonic and plasmonic structures using techniques similar to those employed in industry, so they could be easily incorporated in technologies such as roll to roll. 3) To fabricate prototype solar cells, photodetectors and sensors on top of photonic electrodes, demonstrating improved performance without deterioration of other figures of merit in the device. The results of the research plan will advance the state of the art in nanophotonics structures, providing the path towards a new generation of large-scale and low-cost photonic architectures.
Max ERC Funding
1 500 000 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym FunCBonds
Project Chasing a Fundamental Challenge in Catalysis: A Combined Cleavage of Carbon-Carbon Bonds and Carbon Dioxide for Preparing Functionalized Molecules
Researcher (PI) Ruben Francisco Martin Romo
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE5, ERC-2011-StG_20101014
Summary FunCBonds offers a novel perspective to relevant scientific synthetic problems via a synergistic dual catalytic activation of carbon-carbon bonds and CO2, a topic of major interest not only for basic research science but also from an industrial and social point of view. As the use of alternative feedstocks such as CO2 is still one of the most fundamental gaps in catalytic technologies, I believe that FunCBonds project provides an alternative vision and strategy for the preparation of pharmaceutically relevant carboxylic acid derivatives using inexpensive raw materials in a catalytic fashion. In contrast to the well-established methodology based on carbon-carbon bond formation using either ruthenium or palladium catalysts (recently awarded with the Nobel Prize in Chemistry 2005 and 2010, respectively), the main challenge of this project is the discovery of a non-expensive and non-toxic catalyst that allows the cleavage of C-C bonds and CO2 following the principles of the atom economy. FunCBonds will meet these challenges by offering an innovative approach that will unlock the potential of a combined functionalization of inert C-C and C-O bonds. The project will provide the necessary understanding behind the factors influencing both C-C bond cleavage and the subsequent CO2 insertion event, thus opening up new horizons in preparative organic chemistry as well as offering solutions to a social and industrial problem such as the use of CO2 as chemical feedstock.
Summary
FunCBonds offers a novel perspective to relevant scientific synthetic problems via a synergistic dual catalytic activation of carbon-carbon bonds and CO2, a topic of major interest not only for basic research science but also from an industrial and social point of view. As the use of alternative feedstocks such as CO2 is still one of the most fundamental gaps in catalytic technologies, I believe that FunCBonds project provides an alternative vision and strategy for the preparation of pharmaceutically relevant carboxylic acid derivatives using inexpensive raw materials in a catalytic fashion. In contrast to the well-established methodology based on carbon-carbon bond formation using either ruthenium or palladium catalysts (recently awarded with the Nobel Prize in Chemistry 2005 and 2010, respectively), the main challenge of this project is the discovery of a non-expensive and non-toxic catalyst that allows the cleavage of C-C bonds and CO2 following the principles of the atom economy. FunCBonds will meet these challenges by offering an innovative approach that will unlock the potential of a combined functionalization of inert C-C and C-O bonds. The project will provide the necessary understanding behind the factors influencing both C-C bond cleavage and the subsequent CO2 insertion event, thus opening up new horizons in preparative organic chemistry as well as offering solutions to a social and industrial problem such as the use of CO2 as chemical feedstock.
Max ERC Funding
1 423 800 €
Duration
Start date: 2011-12-01, End date: 2016-11-30