Project acronym 3DNANOMECH
Project Three-dimensional molecular resolution mapping of soft matter-liquid interfaces
Researcher (PI) Ricardo Garcia
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2013-ADG
Summary Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Summary
Optical, electron and probe microscopes are enabling tools for discoveries and knowledge generation in nanoscale sicence and technology. High resolution –nanoscale or molecular-, noninvasive and label-free imaging of three-dimensional soft matter-liquid interfaces has not been achieved by any microscopy method.
Force microscopy (AFM) is considered the second most relevant advance in materials science since 1960. Despite its impressive range of applications, the technique has some key limitations. Force microscopy has not three dimensional depth. What lies above or in the subsurface is not readily characterized.
3DNanoMech proposes to design, build and operate a high speed force-based method for the three-dimensional characterization soft matter-liquid interfaces (3D AFM). The microscope will combine a detection method based on force perturbations, adaptive algorithms, high speed piezo actuators and quantitative-oriented multifrequency approaches. The development of the microscope cannot be separated from its applications: imaging the error-free DNA repair and to understand the relationship existing between the nanomechanical properties and the malignancy of cancer cells. Those problems encompass the different spatial –molecular-nano-mesoscopic- and time –milli to seconds- scales of the instrument.
In short, 3DNanoMech aims to image, map and measure with picoNewton, millisecond and angstrom resolution soft matter surfaces and interfaces in liquid. The long-term vision of 3DNanoMech is to replace models or computer animations of bimolecular-liquid interfaces by real time, molecular resolution maps of properties and processes.
Max ERC Funding
2 499 928 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym 3MC
Project 3D Model Catalysts to explore new routes to sustainable fuels
Researcher (PI) Petra Elisabeth De jongh
Host Institution (HI) UNIVERSITEIT UTRECHT
Call Details Consolidator Grant (CoG), PE4, ERC-2014-CoG
Summary Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Summary
Currently fuels, plastics, and drugs are predominantly manufactured from oil. A transition towards renewable resources critically depends on new catalysts, for instance to convert small molecules (such as solar or biomass derived hydrogen, carbon monoxide, water and carbon dioxide) into more complex ones (such as oxygenates, containing oxygen atoms in their structure). Catalyst development now often depends on trial and error rather than rational design, as the heterogeneity of these composite systems hampers detailed understanding of the role of each of the components.
I propose 3D model catalysts as a novel enabling tool to overcome this problem. Their well-defined nature allows unprecedented precision in the variation of structural parameters (morphology, spatial distribution) of the individual components, while at the same time they mimic real catalysts closely enough to allow testing under industrially relevant conditions. Using this approach I will address fundamental questions, such as:
* What are the mechanisms (structural, electronic, chemical) by which non-metal promoters influence the functionality of copper-based catalysts?
* Which nanoalloys can be formed, how does their composition influence the surface active sites and catalytic functionality under reaction conditions?
* Which size and interface effects occur, and how can we use them to tune the actitivity and selectivity towards desired products?
Our 3D model catalysts will be assembled from ordered mesoporous silica and carbon support materials and Cu-based promoted and bimetallic nanoparticles. The combination with high resolution characterization and testing under realistic conditions allows detailed insight into the role of the different components; critical for the rational design of novel catalysts for a future more sustainable production of chemicals and fuels from renewable resources.
Max ERC Funding
1 999 625 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym BioCircuit
Project Programmable BioMolecular Circuits: Emulating Regulatory Functions in Living Cells Using a Bottom-Up Approach
Researcher (PI) Tom Antonius Franciscus De greef
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Starting Grant (StG), PE4, ERC-2015-STG
Summary Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Summary
Programmable biomolecular circuits have received increasing attention in recent years as the scope of chemistry expands from the synthesis of individual molecules to the construction of chemical networks that can perform sophisticated functions such as logic operations and feedback control. Rationally engineered biomolecular circuits that robustly execute higher-order spatiotemporal behaviours typically associated with intracellular regulatory functions present a unique and uncharted platform to systematically explore the molecular logic and physical design principles of the cell. The experience gained by in-vitro construction of artificial cells displaying advanced system-level functions deepens our understanding of regulatory networks in living cells and allows theoretical assumptions and models to be refined in a controlled setting. This proposal combines elements from systems chemistry, in-vitro synthetic biology and micro-engineering and explores generic strategies to investigate the molecular logic of biology’s regulatory circuits by applying a physical chemistry-driven bottom-up approach. Progress in this field requires 1) proof-of-principle systems where in-vitro biomolecular circuits are designed to emulate characteristic system-level functions of regulatory circuits in living cells and 2) novel experimental tools to operate biochemical networks under out-of-equilibrium conditions. Here, a comprehensive research program is proposed that addresses these challenges by engineering three biochemical model systems that display elementary signal transduction and information processing capabilities. In addition, an open microfluidic droplet reactor is developed that will allow, for the first time, high-throughput analysis of biomolecular circuits encapsulated in water-in-oil droplets. An integral part of the research program is to combine the computational design of in-vitro circuits with novel biochemistry and innovative micro-engineering tools.
Max ERC Funding
1 887 180 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym BIOGRAPHENE
Project Sequencing biological molecules with graphene
Researcher (PI) Gregory Schneider
Host Institution (HI) UNIVERSITEIT LEIDEN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Summary
Graphene – a one atom thin material – has the potential to act as a sensor, primarily the surface and the edges of graphene. This proposal aims at exploring new biosensing routes by exploiting the unique surface and edge chemistry of graphene.
Max ERC Funding
1 499 996 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym BRAINSIGNALS
Project Optical dissection of circuits underlying fast cholinergic signalling during cognitive behaviour
Researcher (PI) Huibert Mansvelder
Host Institution (HI) STICHTING VU
Call Details Starting Grant (StG), LS5, ERC-2011-StG_20101109
Summary Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Summary
Our ability to think, to memorize and focus our thoughts depends on acetylcholine signaling in the brain. The loss of cholinergic signalling in for instance Alzheimer’s disease strongly compromises these cognitive abilities. The traditional view on the role of cholinergic input to the neocortex is that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. This view has been challenged by recent studies demonstrating that rapid phasic changes in ACh levels at the scale of seconds are correlated with focus of attention, suggesting that these signals may mediate defined cognitive operations. Despite a wealth of anatomical data on the organization of the cholinergic system, very little understanding exists on its functional organization. How the relatively sparse input of cholinergic transmission in the prefrontal cortex elicits such a profound and specific control over attention is unknown. The main objective of this proposal is to develop a causal understanding of how cellular mechanisms of fast acetylcholine signalling are orchestrated during cognitive behaviour.
In a series of studies, I have identified several synaptic and cellular mechanisms by which the cholinergic system can alter neuronal circuitry function, both in cortical and subcortical areas. I have used a combination of behavioral, physiological and genetic methods in which I manipulated cholinergic receptor functionality in prefrontal cortex in a subunit specific manner and found that ACh receptors in the prefrontal cortex control attention performance. Recent advances in optogenetic and electrochemical methods now allow to rapidly manipulate and measure acetylcholine levels in freely moving, behaving animals. Using these techniques, I aim to uncover which cholinergic neurons are involved in fast cholinergic signaling during cognition and uncover the underlying neuronal mechanisms that alter prefrontal cortical network function.
Max ERC Funding
1 499 242 €
Duration
Start date: 2011-11-01, End date: 2016-10-31
Project acronym CCC
Project Cracking the Cerebellar Code
Researcher (PI) Christiaan Innocentius De Zeeuw
Host Institution (HI) ERASMUS UNIVERSITAIR MEDISCH CENTRUM ROTTERDAM
Call Details Advanced Grant (AdG), LS5, ERC-2011-ADG_20110310
Summary Spike trains transfer information to and from neurons. Most studies so far assume that the average firing rate or “rate coding” is the predominant way of information coding. However, spikes occur at millisecond precision, and their actual timing or “temporal coding” can in principle strongly increase the information content of spike trains. The two coding mechanisms are not mutually exclusive. Neurons may switch between rate and temporal coding, or use a combination of both coding mechanisms at the same time, which would increase the information content of spike trains even further. Here, we propose to investigate the hypothesis that temporal coding plays, next to rate coding, important and specific roles in cerebellar processing during learning. The cerebellum is ideal to study this timely topic, because it has a clear anatomy with well-organized modules and matrices, a well-described physiology of different types of neurons with distinguishable spiking activity, and a central role in various forms of tractable motor learning. Moreover, uniquely in the brain, the main types of neurons in the cerebellar system can be genetically manipulated in a cell-specific fashion, which will allow us to investigate the behavioural importance of both coding mechanisms following cell-specific interference and/or during cell-specific visual imaging. Thus, for this proposal we will create conditional mouse mutants that will be subjected to learning paradigms in which we can disentangle the contributions of rate coding and temporal coding using electrophysiological and optogenetic recordings and stimulation. Together, our experiments should elucidate how neurons in the brain communicate during natural learning behaviour and how one may be able to intervene in this process to affect or improve procedural learning skills.
Summary
Spike trains transfer information to and from neurons. Most studies so far assume that the average firing rate or “rate coding” is the predominant way of information coding. However, spikes occur at millisecond precision, and their actual timing or “temporal coding” can in principle strongly increase the information content of spike trains. The two coding mechanisms are not mutually exclusive. Neurons may switch between rate and temporal coding, or use a combination of both coding mechanisms at the same time, which would increase the information content of spike trains even further. Here, we propose to investigate the hypothesis that temporal coding plays, next to rate coding, important and specific roles in cerebellar processing during learning. The cerebellum is ideal to study this timely topic, because it has a clear anatomy with well-organized modules and matrices, a well-described physiology of different types of neurons with distinguishable spiking activity, and a central role in various forms of tractable motor learning. Moreover, uniquely in the brain, the main types of neurons in the cerebellar system can be genetically manipulated in a cell-specific fashion, which will allow us to investigate the behavioural importance of both coding mechanisms following cell-specific interference and/or during cell-specific visual imaging. Thus, for this proposal we will create conditional mouse mutants that will be subjected to learning paradigms in which we can disentangle the contributions of rate coding and temporal coding using electrophysiological and optogenetic recordings and stimulation. Together, our experiments should elucidate how neurons in the brain communicate during natural learning behaviour and how one may be able to intervene in this process to affect or improve procedural learning skills.
Max ERC Funding
2 499 600 €
Duration
Start date: 2012-04-01, End date: 2017-03-31
Project acronym CHEMAGEB
Project CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems
Researcher (PI) Roman Tauler Ferrer
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), PE4, ERC-2012-ADG_20120216
Summary We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Summary
We propose to develop new chemometric and high-throughput analytical methods to assess the effects of environmental and climate changes on target biological systems which are representative of ecosystems. This project will combine powerful chemometric and analytical high-throughput methodologies with toxicological tests to examine the effects of environmental stressors (like chemical pollution) and of climate change (like temperature, water scarcity or food shortage), on genomic and metabonomic profiles of target biological systems. The complex nature of experimental data produced by high-throughput analytical techniques, such as DNA microarrays, hyphenated chromatography-mass spectrometry or multi-dimensional nuclear magnetic resonance spectroscopy, requires powerful data analysis tools to extract, summarize and interpret the large amount of information that such megavariate data sets may contain. There is a need to improve and automate every step in the analysis of the data generated from genomic and metabonomic studies using new chemometric and multi- and megavariate tools. The main purpose of this project is to develop such tools. As a result of the whole study, a detailed report on the effects of global change and chemical pollution on the genomic and metabonomic profiles of a selected set of representative target biological systems will be delivered and used for global risk assessment. The information acquired, data sets and computer software will be stored in public data bases using modern data compression and data management technologies. And all the methodologies developed in the project will be published.
Max ERC Funding
2 454 280 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym CMTaaRS
Project Defective protein translation as a pathogenic mechanism of peripheral neuropathy
Researcher (PI) Erik Jan Marthe STORKEBAUM
Host Institution (HI) STICHTING KATHOLIEKE UNIVERSITEIT
Call Details Consolidator Grant (CoG), LS5, ERC-2017-COG
Summary Familial forms of neurodegenerative diseases are caused by mutations in a single gene. It is unknown whether distinct mutations in the same gene or in functionally related genes cause disease through similar or disparate mechanisms. Furthermore, the precise molecular mechanisms underlying virtually all neurodegenerative disorders are poorly understood, and effective treatments are typically lacking.
This is also the case for Charcot-Marie-Tooth (CMT) peripheral neuropathy caused by mutations in five distinct tRNA synthetase (aaRS) genes. We previously generated Drosophila CMT-aaRS models and used a novel method for cell-type-specific labeling of newly synthesized proteins in vivo to show that impaired protein translation may represent a common pathogenic mechanism.
In this proposal, I aim to determine whether translation is also inhibited in CMT-aaRS mouse models, and whether all mutations cause disease through gain-of-toxic-function, or alternatively, whether some mutations act through a dominant-negative mechanism. In addition, I will evaluate whether all CMT-aaRS mutant proteins inhibit translation, and I will test the hypothesis, raised by our unpublished preliminary data shown here, that a defect in the transfer of the (aminoacylated) tRNA from the mutant synthetase to elongation factor eEF1A is the molecular mechanism underlying CMT-aaRS. Finally, I will validate the identified molecular mechanism in CMT-aaRS mouse models, as the most disease-relevant mammalian model.
I expect to elucidate whether all CMT-aaRS mutations cause disease through a common molecular mechanism that involves inhibition of translation. This is of key importance from a therapeutic perspective, as a common pathogenic mechanism allows for a unified therapeutic approach. Furthermore, this proposal has the potential to unravel the detailed molecular mechanism underlying CMT-aaRS, what would constitute a breakthrough and a requirement for rational drug design for this incurable disease.
Summary
Familial forms of neurodegenerative diseases are caused by mutations in a single gene. It is unknown whether distinct mutations in the same gene or in functionally related genes cause disease through similar or disparate mechanisms. Furthermore, the precise molecular mechanisms underlying virtually all neurodegenerative disorders are poorly understood, and effective treatments are typically lacking.
This is also the case for Charcot-Marie-Tooth (CMT) peripheral neuropathy caused by mutations in five distinct tRNA synthetase (aaRS) genes. We previously generated Drosophila CMT-aaRS models and used a novel method for cell-type-specific labeling of newly synthesized proteins in vivo to show that impaired protein translation may represent a common pathogenic mechanism.
In this proposal, I aim to determine whether translation is also inhibited in CMT-aaRS mouse models, and whether all mutations cause disease through gain-of-toxic-function, or alternatively, whether some mutations act through a dominant-negative mechanism. In addition, I will evaluate whether all CMT-aaRS mutant proteins inhibit translation, and I will test the hypothesis, raised by our unpublished preliminary data shown here, that a defect in the transfer of the (aminoacylated) tRNA from the mutant synthetase to elongation factor eEF1A is the molecular mechanism underlying CMT-aaRS. Finally, I will validate the identified molecular mechanism in CMT-aaRS mouse models, as the most disease-relevant mammalian model.
I expect to elucidate whether all CMT-aaRS mutations cause disease through a common molecular mechanism that involves inhibition of translation. This is of key importance from a therapeutic perspective, as a common pathogenic mechanism allows for a unified therapeutic approach. Furthermore, this proposal has the potential to unravel the detailed molecular mechanism underlying CMT-aaRS, what would constitute a breakthrough and a requirement for rational drug design for this incurable disease.
Max ERC Funding
2 000 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym COLMIN
Project A Google Earth Approach to Understanding Collagen Mineralization
Researcher (PI) Nico SOMMERDIJK
Host Institution (HI) TECHNISCHE UNIVERSITEIT EINDHOVEN
Call Details Advanced Grant (AdG), PE4, ERC-2017-ADG
Summary Collagen mineralization in bone is one of the most crucial processes in our body as it supplies the skeleton on which we depend for support and protection. Bone’s impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite.
Despite its importance to the human body, relatively little is understood about collagen mineralization and how the proteins govern mineral growth with such precision. This is because the matrix development is a complex process with different stages that occur over multiple length scales and depends on many different components.
I propose to obtain the first comprehensive picture of the collagen mineralization mechanism by unraveling its dynamics and structural details. It is not only of great fundamental importance, it also opens the way to the development of better biomaterials, as well as to strategies for the treatment of mineralization-related diseases.
I will achieve this ambitious goal by designing a dedicated tissue engineering platform that models real bone as closely as possible, and will allow application of multiple advanced analysis techniques. These I will employ in a “Google Earth” approach, studying the process from the micrometer to the nanometer scale, combining live cell imaging and “beyond state-of-the-art” electron microscopy with chemical and biochemical analysis to reveal the details of collagen mineralization with the highest spatial, temporal and molecular resolution thus far. Exploiting my extensive expertise in the field of biomineralization and advanced electron microscopy, COLMIN will provide a major step in understanding collagen formation and mineralization, and provide insights that will help to fight bone-related diseases. The advanced multidisciplinary methodology developed here will set a new standard for the advanced analysis of bone formation and other biological processes.
Summary
Collagen mineralization in bone is one of the most crucial processes in our body as it supplies the skeleton on which we depend for support and protection. Bone’s impressive mechanical properties arise from the hierarchical organization of the organic collagen matrix that is mineralized with ultrathin, aligned inorganic crystals of carbonated hydroxyapatite.
Despite its importance to the human body, relatively little is understood about collagen mineralization and how the proteins govern mineral growth with such precision. This is because the matrix development is a complex process with different stages that occur over multiple length scales and depends on many different components.
I propose to obtain the first comprehensive picture of the collagen mineralization mechanism by unraveling its dynamics and structural details. It is not only of great fundamental importance, it also opens the way to the development of better biomaterials, as well as to strategies for the treatment of mineralization-related diseases.
I will achieve this ambitious goal by designing a dedicated tissue engineering platform that models real bone as closely as possible, and will allow application of multiple advanced analysis techniques. These I will employ in a “Google Earth” approach, studying the process from the micrometer to the nanometer scale, combining live cell imaging and “beyond state-of-the-art” electron microscopy with chemical and biochemical analysis to reveal the details of collagen mineralization with the highest spatial, temporal and molecular resolution thus far. Exploiting my extensive expertise in the field of biomineralization and advanced electron microscopy, COLMIN will provide a major step in understanding collagen formation and mineralization, and provide insights that will help to fight bone-related diseases. The advanced multidisciplinary methodology developed here will set a new standard for the advanced analysis of bone formation and other biological processes.
Max ERC Funding
3 498 006 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym COMP-MICR-CROW-MEM
Project Computational Microscopy of Crowded Membranes
Researcher (PI) Siewert Jan Marrink
Host Institution (HI) RIJKSUNIVERSITEIT GRONINGEN
Call Details Advanced Grant (AdG), PE4, ERC-2014-ADG
Summary Cell membranes form a highly complex and heterogeneous mixture of membrane proteins and lipids. Understanding the protein-lipid interplay that gives rise to the lateral organisation principles of cell membranes is essential for life and health. Thus, investigations of these crowded membranes is emerging as a new and exceptionally exciting frontier at the crossroads of biology, life sciences, physics, and chemistry.
However, our current understanding of the detailed organisation of cellular membranes remains rather elusive. Characterisation of the structural heterogeneity in-vivo remains very challenging, owing to the lack of experimental methods suitable for studying these fluctuating nanoscale assemblies of lipids and proteins with the required spatio-temporal resolution. In recent years, computer simulations have become a unique investigatory tool for understanding the driving forces governing the lateral organisation of cellular membrane components and this “computational microscopy” has become indispensible as a complement to traditional microscopy methods.
In this ERC project I will, using advanced computational microscopy, study the interaction of lipids and proteins in complex, crowded, membrane patches, to enable the driving forces of membrane protein sorting and clustering to be unravelled at conditions closely mimicking real cellular membranes. The specific objectives are:
• To develop a novel computational microscopy framework for simulating biomolecular processes at multiple resolutions.
• To use this new computational microscopy framework to investigate the driving forces of membrane protein sorting and clustering.
• To provide a molecular view of realistic, crowded, biological membranes composed of hundreds of different lipids and proteins.
The outcomes will enable subsequent studies of many different types of cell membranes based on forthcoming lipidomics studies and progress in structural characterisation of membrane proteins.
Summary
Cell membranes form a highly complex and heterogeneous mixture of membrane proteins and lipids. Understanding the protein-lipid interplay that gives rise to the lateral organisation principles of cell membranes is essential for life and health. Thus, investigations of these crowded membranes is emerging as a new and exceptionally exciting frontier at the crossroads of biology, life sciences, physics, and chemistry.
However, our current understanding of the detailed organisation of cellular membranes remains rather elusive. Characterisation of the structural heterogeneity in-vivo remains very challenging, owing to the lack of experimental methods suitable for studying these fluctuating nanoscale assemblies of lipids and proteins with the required spatio-temporal resolution. In recent years, computer simulations have become a unique investigatory tool for understanding the driving forces governing the lateral organisation of cellular membrane components and this “computational microscopy” has become indispensible as a complement to traditional microscopy methods.
In this ERC project I will, using advanced computational microscopy, study the interaction of lipids and proteins in complex, crowded, membrane patches, to enable the driving forces of membrane protein sorting and clustering to be unravelled at conditions closely mimicking real cellular membranes. The specific objectives are:
• To develop a novel computational microscopy framework for simulating biomolecular processes at multiple resolutions.
• To use this new computational microscopy framework to investigate the driving forces of membrane protein sorting and clustering.
• To provide a molecular view of realistic, crowded, biological membranes composed of hundreds of different lipids and proteins.
The outcomes will enable subsequent studies of many different types of cell membranes based on forthcoming lipidomics studies and progress in structural characterisation of membrane proteins.
Max ERC Funding
2 396 585 €
Duration
Start date: 2015-11-01, End date: 2020-10-31