Project acronym ADONIS
Project Attosecond Dynamics On Interfaces and Solids
Researcher (PI) Reinhard Kienberger
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Summary
New insight into ever smaller microscopic units of matter as well as in ever faster evolving chemical, physical or atomic processes pushes the frontiers in many fields in science. Pump/probe experiments turned out to be the most direct approach to time-domain investigations of fast-evolving microscopic processes. Accessing atomic and molecular inner-shell processes directly in the time-domain requires a combination of short wavelengths in the few hundred eV range and sub-femtosecond pulse duration. The concept of light-field-controlled XUV photoemission employs an XUV pulse achieved by High-order Harmonic Generation (HHG) as a pump and the light pulse as a probe or vice versa. The basic prerequisite, namely the generation and measurement of isolated sub-femtosecond XUV pulses synchronized to a strong few-cycle light pulse with attosecond precision, opens up a route to time-resolved inner-shell atomic and molecular spectroscopy with present day sources. Studies of attosecond electronic motion (1 as = 10-18 s) in solids and on surfaces and interfaces have until now remained out of reach. The unprecedented time resolution of the aforementioned technique will enable for the first time monitoring of sub-fs dynamics of such systems in the time domain. These dynamics – of electronic excitation, relaxation, and wave packet motion – are of broad scientific interest and pertinent to the development of many modern technologies including semiconductor and molecular electronics, optoelectronics, information processing, photovoltaics, and optical nano-structuring. The purpose of this project is to investigate phenomena like the temporal evolution of direct photoemission, interference effects in resonant photoemission, fast adsorbate-substrate charge transfer, and electronic dynamics in supramolecular assemblies, in a series of experiments in order to overcome the temporal limits of measurements in solid state physics and to better understand processes in microcosm.
Max ERC Funding
1 296 000 €
Duration
Start date: 2008-10-01, End date: 2013-09-30
Project acronym ATOMPHOTONLOQIP
Project Experimental Linear Optics Quantum Information Processing with Atoms and Photons
Researcher (PI) Jian-Wei Pan
Host Institution (HI) RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Summary
Quantum information science and atom optics are among the most active fields in modern physics. In recent years, many theoretical efforts have been made to combine these two fields. Recent experimental progresses have shown the in-principle possibility to perform scalable quantum information processing (QIP) with linear optics and atomic ensembles. The main purpose of the present project is to use atomic qubits as quantum memory and exploit photonic qubits for information transfer and processing to achieve efficient linear optics QIP. On the one hand, utilizing the interaction between laser pulses and atomic ensembles we will experimentally investigate the potentials of atomic ensembles in the gas phase to build quantum repeaters for long-distance quantum communication, that is, to develop a new technological solution for quantum repeaters making use of the effective qubit-type entanglement of two cold atomic ensembles by a projective measurement of individual photons by spontaneous Raman processes. On this basis, we will further investigate the advantages of cold atoms in an optical trap to enhance the coherence time of atomic qubits beyond the threshold for scalable realization of quantum repeaters. Moreover, building on our long experience in research on multi-photon entanglement, we also plan to perform a number of significant experiments in the field of QIP with particular emphasis on fault-tolerant quantum computation, photon-loss-tolerant quantum computation and cluster-state based quantum simulation. Finally, by combining the techniques developed in the above quantum memory and multi-photon interference experiments, we will further experimentally investigate the possibility to achieve quantum teleportation between photonic and atomic qubits, quantum teleportation between remote atomic qubits and efficient entanglement generation via classical feed-forward. The techniques that will be developed in the present project will lay the basis for future large scale
Max ERC Funding
1 435 000 €
Duration
Start date: 2008-07-01, End date: 2013-12-31
Project acronym CORTEXSELFCONTROL
Project Self-Modulating Neurons in the Cerebral Cortex: From Molecular Mechanisms to Cortical Network Activities
Researcher (PI) Alberto Bacci
Host Institution (HI) INSTITUT DU CERVEAU ET DE LA MOELLE EPINIERE
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary In the mammalian brain, the neocortex is the site where sensory information is integrated into complex cognitive functions. This is accomplished by the activity of both principal glutamatergic neurons and locally-projecting inhibitory GABAergic interneurons, interconnected in complex networks. Inhibitory neurons play several key roles in neocortical function. For example, they shape sensory receptive fields and drive several high frequency network oscillations. On the other hand, defects in their function can lead to devastating diseases, such as epilepsy and schizophrenia. Cortical interneurons represent a highly heterogeneous cell population. Understanding the specific role of each interneuron subtype within cortical microcircuits is still a crucial open question. We have examined properties of two major functional interneuron subclasses in neocortical layer V: fast-spiking (FS) and low-threshold spiking (LTS) cells. Our previous data indicate that each group expresses a novel form of self inhibition, namely autaptic inhibitory transmission in FS cells and an endocannabinoid-mediated slow self inhibition in LTS interneurons. In this proposal we will address three major questions relevant to self-inhibition of neocortical interneurons: 1) What is the role of FS cell autapses in coordinating fast network synchrony? 2) What are the molecular mechanisms underlying autaptic asynchronous release, prolonging FS cell self-inhibition by several seconds, and what is its relevance during physiological and pathological network activities? 3) What are the induction mechanisms, the molecular players involved and the functional roles within cortical microcircuits of the endocannabinoid-mediated long-lasting self-inhibition in LTS interneurons? Results of these experiments will lead to a better understanding of GABAergic interneuron regulation of neocortical excitability, relevant to both normal and pathological cortical function.
Summary
In the mammalian brain, the neocortex is the site where sensory information is integrated into complex cognitive functions. This is accomplished by the activity of both principal glutamatergic neurons and locally-projecting inhibitory GABAergic interneurons, interconnected in complex networks. Inhibitory neurons play several key roles in neocortical function. For example, they shape sensory receptive fields and drive several high frequency network oscillations. On the other hand, defects in their function can lead to devastating diseases, such as epilepsy and schizophrenia. Cortical interneurons represent a highly heterogeneous cell population. Understanding the specific role of each interneuron subtype within cortical microcircuits is still a crucial open question. We have examined properties of two major functional interneuron subclasses in neocortical layer V: fast-spiking (FS) and low-threshold spiking (LTS) cells. Our previous data indicate that each group expresses a novel form of self inhibition, namely autaptic inhibitory transmission in FS cells and an endocannabinoid-mediated slow self inhibition in LTS interneurons. In this proposal we will address three major questions relevant to self-inhibition of neocortical interneurons: 1) What is the role of FS cell autapses in coordinating fast network synchrony? 2) What are the molecular mechanisms underlying autaptic asynchronous release, prolonging FS cell self-inhibition by several seconds, and what is its relevance during physiological and pathological network activities? 3) What are the induction mechanisms, the molecular players involved and the functional roles within cortical microcircuits of the endocannabinoid-mediated long-lasting self-inhibition in LTS interneurons? Results of these experiments will lead to a better understanding of GABAergic interneuron regulation of neocortical excitability, relevant to both normal and pathological cortical function.
Max ERC Funding
996 000 €
Duration
Start date: 2008-10-01, End date: 2014-03-31
Project acronym EMPATHICBRAIN
Project Plasticity of the Empathic Brain: Structural and Functional MRI Studies on the Effect of Empathy Training on the Human Brain and Prosocial Behaviour
Researcher (PI) Tania Singer
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Summary
Social neuroscientists study the neural mechanisms underlying our capacity to understand our own and other people’s feelings. Despite neuroscientists’ advances in plasticity research and empathy research, little is known about cortical and behavioural plasticity in emotion understanding and empathy. Clearly, in today’s world, acquiring the capacity to effectively enhance empathy and prosocial behaviour is of the utmost importance. In the present project, we will investigate the malleability of empathy via training. We will adopt a multimethod and interdisciplinary approach, combining techniques and paradigms from the fields of neuroscience, (bio-)psychology, and economics. Studies 1-3 will provide a cross-sectional look at structural and functional differences in the brains of individuals scoring high vs. low on empathy, of those with pathological deficits in empathy (psychopaths, alexithymics), and of individuals starting vs. finishing a three-year training program in Carl Rogers’ person-centred therapy, which aims to increase emotional capacity and empathy. Study 4 will examine brain plasticity using real-time fMRI: Participants will learn to self-regulate brain activity through the use of immediate feedback from emotion-related brain areas while practicing certain mental techniques. In Study 5, a small-scale longitudinal study, healthy individuals will receive extensive training by professional instructors in either empathy- or memory-enhancing techniques previously developed in the East and the West. We will measure training-related changes in brain structure and functioning, in hormone levels, and in behaviour. Evidence for emotional brain plasticity in adults and children would not only have important implications for the implementation of scientifically validated, effective training programs for schools and for economic and political organizations, but also for the treatment of the marked social deficits in autistic and psychopathic populations.
Max ERC Funding
1 499 821 €
Duration
Start date: 2008-09-01, End date: 2014-08-31
Project acronym HCV_IMMUNOLOGY
Project The paradoxical role of type I interferons in Hepatitis C disease pathogenesis and treatment
Researcher (PI) Matthew Albert
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary Hepatitis C virus (HCV) presents a significant public health problem with nearly 200 million infected people worldwide. Over the past three years, we have developed partnerships with clinicians and epidemiologists so that we can achieve better insight into immune pathogenesis of both acute and chronic HCV infection. My newly created research unit is committed to defining the complex interplay between virus and host from the perspective of type I interferons (IFNs) and IFN induced gene products. Furthermore, we aim to identify biomarkers predictive of viral clearance that could help identify, pre-treatment, which individuals will respond to their IFNα / ribavirin therapy. Specifically, we aim to: I. To define the role of IFN and IFN-induced genes in HCV clearance. This aim will utilize patient samples to define the role of endogenously produced IFNs in the clearance of HCV during acute infection and the paradoxical role they play in making chronically infected patients resistant to their exogenous IFN therapy. II. To characterize the effect of IFN and INF-induced gene products in the cross-priming of CD8+ T cells. This aim is based on our evidence that HCV-reactive CD8+ T cells are activated by an indirect pathway called cross-presentation and our recent data, which illustrates the complex ways in which type I IFNs can regulate this antigen presentation pathway. III. To determine the in vivo pro- and counter-inflammatory effect of IFN and INF-induced gene products in the cross-priming of CD8+ T cells. This aspect of the project will utilize mouse models to test our hypotheses regarding HCV disease pathogenesis. Our work and the studies outlined in this proposal will help push forward our understanding of the HCV disease pathogenesis and lead to the development of new diagnostic tools as well as strategies for improving upon existing therapeutic strategies.
Summary
Hepatitis C virus (HCV) presents a significant public health problem with nearly 200 million infected people worldwide. Over the past three years, we have developed partnerships with clinicians and epidemiologists so that we can achieve better insight into immune pathogenesis of both acute and chronic HCV infection. My newly created research unit is committed to defining the complex interplay between virus and host from the perspective of type I interferons (IFNs) and IFN induced gene products. Furthermore, we aim to identify biomarkers predictive of viral clearance that could help identify, pre-treatment, which individuals will respond to their IFNα / ribavirin therapy. Specifically, we aim to: I. To define the role of IFN and IFN-induced genes in HCV clearance. This aim will utilize patient samples to define the role of endogenously produced IFNs in the clearance of HCV during acute infection and the paradoxical role they play in making chronically infected patients resistant to their exogenous IFN therapy. II. To characterize the effect of IFN and INF-induced gene products in the cross-priming of CD8+ T cells. This aim is based on our evidence that HCV-reactive CD8+ T cells are activated by an indirect pathway called cross-presentation and our recent data, which illustrates the complex ways in which type I IFNs can regulate this antigen presentation pathway. III. To determine the in vivo pro- and counter-inflammatory effect of IFN and INF-induced gene products in the cross-priming of CD8+ T cells. This aspect of the project will utilize mouse models to test our hypotheses regarding HCV disease pathogenesis. Our work and the studies outlined in this proposal will help push forward our understanding of the HCV disease pathogenesis and lead to the development of new diagnostic tools as well as strategies for improving upon existing therapeutic strategies.
Max ERC Funding
1 098 000 €
Duration
Start date: 2009-01-01, End date: 2014-06-30
Project acronym ISCATAXIA
Project Unraveling the molecular mechanisms leading to cellular dysfunction in diseases linked to defects in mitochondrial iron-sulfur cluster metabolism
Researcher (PI) Hélène Monique Sadoulet Puccio
Host Institution (HI) CENTRE EUROPEEN DE RECHERCHE EN BIOLOGIE ET MEDECINE
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary The project aims at unraveling the molecular pathophysiology of recessive ataxias, a heterogeneous set of severely disabling neurodegenerative disorders due to loss of function of proteins involved either in mitochondrial/metabolic pathways or DNA repair. Friedreich ataxia, the most common form, is due to partial loss of function of frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biogenesis. Furthermore, the rare X-linked sideroblastic anemia with cerebellar ataxia is caused by mutation in ABCb7, an ATP-binding cassette transporter of the mitochondrial inner membrane necessary for cytosolic ISC export. ISC are versatile co-factors of proteins involved in electron transport, enzyme catalysis and regulation of gene expression. The synthesis and insertion of ISC into apoproteins involve complex machineries that are still poorly understood in the mammalian cell. The objectives of this proposal are: 1) to elucidate ISC biogenesis and metabolism in the mammalian cell, with an emphasis on the role of frataxin and ABCb7; 2) to better understand the molecular pathways that are involved in neuronal dysfunction due to defects in mitochondrial ISC metabolism. These objectives will be accomplished by a multidisciplinary approach combining molecular and biochemical approaches to study the ISC assembly machineries, bioinformatic and proteomic studies to identify new Fe-S proteins, the development and pathological analysis of animal and cellular models to dissect the molecular mechanisms, and transcriptomic analysis to uncover the common pathways among recessive ataxias. A specific focus of the proposal will be the involvement of DNA damage response pathways in neuronal dysfunction, as several DNA repair enzymes have recently been identified as Fe-S proteins and thus might be directly affected by frataxin and ABCb7 deficiency. This proposal should lead to the identification of different pathways for therapeutic intervention for these devastating disorders.
Summary
The project aims at unraveling the molecular pathophysiology of recessive ataxias, a heterogeneous set of severely disabling neurodegenerative disorders due to loss of function of proteins involved either in mitochondrial/metabolic pathways or DNA repair. Friedreich ataxia, the most common form, is due to partial loss of function of frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biogenesis. Furthermore, the rare X-linked sideroblastic anemia with cerebellar ataxia is caused by mutation in ABCb7, an ATP-binding cassette transporter of the mitochondrial inner membrane necessary for cytosolic ISC export. ISC are versatile co-factors of proteins involved in electron transport, enzyme catalysis and regulation of gene expression. The synthesis and insertion of ISC into apoproteins involve complex machineries that are still poorly understood in the mammalian cell. The objectives of this proposal are: 1) to elucidate ISC biogenesis and metabolism in the mammalian cell, with an emphasis on the role of frataxin and ABCb7; 2) to better understand the molecular pathways that are involved in neuronal dysfunction due to defects in mitochondrial ISC metabolism. These objectives will be accomplished by a multidisciplinary approach combining molecular and biochemical approaches to study the ISC assembly machineries, bioinformatic and proteomic studies to identify new Fe-S proteins, the development and pathological analysis of animal and cellular models to dissect the molecular mechanisms, and transcriptomic analysis to uncover the common pathways among recessive ataxias. A specific focus of the proposal will be the involvement of DNA damage response pathways in neuronal dysfunction, as several DNA repair enzymes have recently been identified as Fe-S proteins and thus might be directly affected by frataxin and ABCb7 deficiency. This proposal should lead to the identification of different pathways for therapeutic intervention for these devastating disorders.
Max ERC Funding
1 449 924 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym MANITOP
Project Massive Neutrinos: Investigating their Theoretical Origin and Phenomenology
Researcher (PI) Werner Rodejohann
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), PE2, ERC-2007-StG
Summary The aim of the proposed project is to shed light on the theoretical origin of neutrino masses and to explore the phenomenological consequences of the model predictions and of possible mechanisms giving rise to neutrino mass. The results of many upcoming experiments in the neutrino sector and beyond will be a crucial discriminator for models and will have to be followed closely. Apart from the usual neutrino oscillation observables, there are more model-dependent implications of neutrino mass models, for instance lepton flavor violating decays and electric dipole moments in the charged lepton sector, or processes involving new particles at colliders such as the LHC. The connection to the baryon asymmetry of the Universe, to dark matter and to proton decay will also be studied. Phenomenology will also be focussed on: in particular, the implications of upcoming (precision) experiments on the neutrino mass and mixing parameters or the neutrino mass matrix will be investigated. The prospects of using high energy neutrino cosmic rays, neutrinoless double beta decay (including analogous processes) and new experimental ideas to probe the parameters of neutrino physics will also be explored.
Summary
The aim of the proposed project is to shed light on the theoretical origin of neutrino masses and to explore the phenomenological consequences of the model predictions and of possible mechanisms giving rise to neutrino mass. The results of many upcoming experiments in the neutrino sector and beyond will be a crucial discriminator for models and will have to be followed closely. Apart from the usual neutrino oscillation observables, there are more model-dependent implications of neutrino mass models, for instance lepton flavor violating decays and electric dipole moments in the charged lepton sector, or processes involving new particles at colliders such as the LHC. The connection to the baryon asymmetry of the Universe, to dark matter and to proton decay will also be studied. Phenomenology will also be focussed on: in particular, the implications of upcoming (precision) experiments on the neutrino mass and mixing parameters or the neutrino mass matrix will be investigated. The prospects of using high energy neutrino cosmic rays, neutrinoless double beta decay (including analogous processes) and new experimental ideas to probe the parameters of neutrino physics will also be explored.
Max ERC Funding
790 800 €
Duration
Start date: 2008-09-01, End date: 2012-08-31
Project acronym MICROFLEX
Project Microbiology of Dehalococcoides-like Chloroflexi
Researcher (PI) Lorenz Adrian
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR UMWELTFORSCHUNG GMBH - UFZ
Call Details Starting Grant (StG), LS3, ERC-2007-StG
Summary I propose to initiate research on a specific group of bacteria, here denominated as the “Dehalococcoides-like Chloroflexi”. This group of bacteria is formed by several cultivated strains of the genus Dehalococcoides and many sequences of uncultivated organisms mostly from marine sediment or subsurface locations. All together form one subphylum of the Chloroflexi. Bacteria of the Dehalococcoides-like Chloroflexi are of particular importance for two independent reasons: first, the subphylum contains all bacteria known to transform under anaerobic conditions toxic and persistent halogenated compounds such as chlorinated dioxins, benzenes, biphenyls, vinyl chloride or brominated biphenylethers; secondly, massive amounts of Dehalococcoides-like Chloroflexi have recently been detected in marine organic-rich deep sediments dominating the populations with up to 80% of the total cell counts. However, many aspects of the physiology of Dehalococcoides species are unclear and almost nothing is known about Chloroflexi in deep sediments. I have worked for many years on the microbiology, biochemistry and genomics of Dehalococcoides species. With the proposed group I plan to focus on the physiological links between Chloroflexi in contaminated aquifers and those in marine sediments. Initially, cultures of marine sediment-Chloroflexi will be established in our lab and compared with pure Dehalococcoides strains. Objectives of our research towards marine Chloroflexi will be the description of the physiology, of the biochemistry of energy conservation and of key genes encoded in the genomes. It is anticipated that the research leads to a substantiated hypothesis on the mode of energy fixation in marine deep-sediments and an initial description of the role of Dehalococcoides-like Chloroflexi in biogeochemical cycles. We also expect to find insights into Chloroflexi evolution and their role in earth history by comparing genomes between Dehalococcoides species and marine Chloroflexi.
Summary
I propose to initiate research on a specific group of bacteria, here denominated as the “Dehalococcoides-like Chloroflexi”. This group of bacteria is formed by several cultivated strains of the genus Dehalococcoides and many sequences of uncultivated organisms mostly from marine sediment or subsurface locations. All together form one subphylum of the Chloroflexi. Bacteria of the Dehalococcoides-like Chloroflexi are of particular importance for two independent reasons: first, the subphylum contains all bacteria known to transform under anaerobic conditions toxic and persistent halogenated compounds such as chlorinated dioxins, benzenes, biphenyls, vinyl chloride or brominated biphenylethers; secondly, massive amounts of Dehalococcoides-like Chloroflexi have recently been detected in marine organic-rich deep sediments dominating the populations with up to 80% of the total cell counts. However, many aspects of the physiology of Dehalococcoides species are unclear and almost nothing is known about Chloroflexi in deep sediments. I have worked for many years on the microbiology, biochemistry and genomics of Dehalococcoides species. With the proposed group I plan to focus on the physiological links between Chloroflexi in contaminated aquifers and those in marine sediments. Initially, cultures of marine sediment-Chloroflexi will be established in our lab and compared with pure Dehalococcoides strains. Objectives of our research towards marine Chloroflexi will be the description of the physiology, of the biochemistry of energy conservation and of key genes encoded in the genomes. It is anticipated that the research leads to a substantiated hypothesis on the mode of energy fixation in marine deep-sediments and an initial description of the role of Dehalococcoides-like Chloroflexi in biogeochemical cycles. We also expect to find insights into Chloroflexi evolution and their role in earth history by comparing genomes between Dehalococcoides species and marine Chloroflexi.
Max ERC Funding
1 287 258 €
Duration
Start date: 2008-06-01, End date: 2013-12-31
Project acronym MYELIN
Project Mechanisms of myelin biogenesis and repair
Researcher (PI) Mikael Simons
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary During the development of the central nervous system, specialized glia, oligodendrocytes, extend and wrap their plasma membrane around axons to form tightly packed membrane stacks that provide electrical insulation. Axonal insulation by myelin facilitates rapid nerve conduction and is essential for neuronal metabolism. Damage to the myelin sheath as it for example occurs in multiple sclerosis results in severe neurological disability not only by slowing down nerve conduction, but also as a result of neurodegeneration. Our main goal is to develop strategies to promote remyelination in demyelinating diseases. To realize this goal we need to understand how myelin is formed during normal development. The focus of this project will therefore be on the molecular mechanism of myelination and in particular on the role of neuron-glia communication in this process. We plan to study the mechanisms of myelin membrane growth and test a novel model of membrane extension. We hypothesize that the myelin membrane grows by the lateral diffusion of plasma membrane driven by a tension gradient that is formed by membrane trafficking events. We propose that neurons control this process by regulating the balance of exo- and endocytosis in oligodendrocytes. Furthermore, we would like to test a novel model of myelin membrane assembly, in which we suggest that myelin is formed after a gradual maturation of the plasma membrane that is regulated by neurons and require MBP. We will also investigate the signalling from oligodendrocytes to neurons by analyzing the function of small membrane vesicles, exosomes that we have recently found to be released by oligodendrocytes. Our goal is to understand how these signalling systems act on the cellular machinery that generates myelin. We hope that this approach will not only provide key insights into the development of myelin, but also help us to find new druggable targets for demyelinating diseases.
Summary
During the development of the central nervous system, specialized glia, oligodendrocytes, extend and wrap their plasma membrane around axons to form tightly packed membrane stacks that provide electrical insulation. Axonal insulation by myelin facilitates rapid nerve conduction and is essential for neuronal metabolism. Damage to the myelin sheath as it for example occurs in multiple sclerosis results in severe neurological disability not only by slowing down nerve conduction, but also as a result of neurodegeneration. Our main goal is to develop strategies to promote remyelination in demyelinating diseases. To realize this goal we need to understand how myelin is formed during normal development. The focus of this project will therefore be on the molecular mechanism of myelination and in particular on the role of neuron-glia communication in this process. We plan to study the mechanisms of myelin membrane growth and test a novel model of membrane extension. We hypothesize that the myelin membrane grows by the lateral diffusion of plasma membrane driven by a tension gradient that is formed by membrane trafficking events. We propose that neurons control this process by regulating the balance of exo- and endocytosis in oligodendrocytes. Furthermore, we would like to test a novel model of myelin membrane assembly, in which we suggest that myelin is formed after a gradual maturation of the plasma membrane that is regulated by neurons and require MBP. We will also investigate the signalling from oligodendrocytes to neurons by analyzing the function of small membrane vesicles, exosomes that we have recently found to be released by oligodendrocytes. Our goal is to understand how these signalling systems act on the cellular machinery that generates myelin. We hope that this approach will not only provide key insights into the development of myelin, but also help us to find new druggable targets for demyelinating diseases.
Max ERC Funding
1 290 000 €
Duration
Start date: 2009-01-01, End date: 2012-12-31
Project acronym NANOMAP
Project The Synapse Nanomap
Researcher (PI) Silvio Olivier Rizzoli
Host Institution (HI) UNIVERSITAETSMEDIZIN GOETTINGEN - GEORG-AUGUST-UNIVERSITAET GOETTINGEN - STIFTUNG OEFFENTLICHEN RECHTS
Call Details Starting Grant (StG), LS4, ERC-2007-StG
Summary Stimulated Emission Depletion (STED) microscopy is one of the most important recent developments in light microscopy (Willig et al., 2006, Nature 440:935-9). STED allows for imaging cellular elements with diffraction-unlimited resolution; in practical terms, the resolution (normally limited to ~200-300 nm) is improved down to 30-60 nm. Together with the development of two-color STED microscopy (Donnert et al., 2007, Biophys J. 92:L67-9), this technique allows experimenters to pinpoint the position of various cellular elements with nanometer precision. Obtaining a cellular nanomap is not feasible with conventional light microscopy, due to its low resolution. Electron microscopy cannot be applied, as its labeling efficiency it too low. I propose here to use STED microscopy to characterize the positions of the major components of the synapse. The preparation will be cultured hippocampal neurons, which have numerous small (about one micron in diameter) synaptic nerve terminals. I will determine the locations of synaptic proteins involved in neurotransmitter release, in membrane retrieval and in pre- and post-synaptic active zone structure. Less specialized elements such as the cytoskeleton, mitochondria and endosomes of the synapse will also be investigated. The work will provide answers for a number of questions in the neuroscience field, such as how and where the synaptic vesicles get retrieved, how pre- and post-synaptic active zone elements correlate, and what the role of cytoskeletal elements is in synaptic transmission. The small size and relatively low complexity (compared to whole cells) of the synaptic boutons will allows the work to be completed within a reasonable timeframe. Successful completion of the project will encourage researchers to perform larger scale cellular nano-maps, which would eventually replace the largely erroneous cellular fractionation techniques currently used nowadays to determine the location of various proteins.
Summary
Stimulated Emission Depletion (STED) microscopy is one of the most important recent developments in light microscopy (Willig et al., 2006, Nature 440:935-9). STED allows for imaging cellular elements with diffraction-unlimited resolution; in practical terms, the resolution (normally limited to ~200-300 nm) is improved down to 30-60 nm. Together with the development of two-color STED microscopy (Donnert et al., 2007, Biophys J. 92:L67-9), this technique allows experimenters to pinpoint the position of various cellular elements with nanometer precision. Obtaining a cellular nanomap is not feasible with conventional light microscopy, due to its low resolution. Electron microscopy cannot be applied, as its labeling efficiency it too low. I propose here to use STED microscopy to characterize the positions of the major components of the synapse. The preparation will be cultured hippocampal neurons, which have numerous small (about one micron in diameter) synaptic nerve terminals. I will determine the locations of synaptic proteins involved in neurotransmitter release, in membrane retrieval and in pre- and post-synaptic active zone structure. Less specialized elements such as the cytoskeleton, mitochondria and endosomes of the synapse will also be investigated. The work will provide answers for a number of questions in the neuroscience field, such as how and where the synaptic vesicles get retrieved, how pre- and post-synaptic active zone elements correlate, and what the role of cytoskeletal elements is in synaptic transmission. The small size and relatively low complexity (compared to whole cells) of the synaptic boutons will allows the work to be completed within a reasonable timeframe. Successful completion of the project will encourage researchers to perform larger scale cellular nano-maps, which would eventually replace the largely erroneous cellular fractionation techniques currently used nowadays to determine the location of various proteins.
Max ERC Funding
1 670 000 €
Duration
Start date: 2008-09-01, End date: 2013-08-31