Project acronym 4TH-NU-AVENUE
Project Search for a fourth neutrino with a PBq anti-neutrino source
Researcher (PI) Thierry Michel René Lasserre
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Summary
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. This hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce antineutrino beta-source deployed at the center of a large low background liquid scintillator detector, such like Borexino, KamLAND, and SNO+. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.
The proposed program aims to perform the necessary research and developments to produce and deploy an intense antineutrino source in a large liquid scintillator detector. Our program will address the definition of the production process of the neutrino source as well as its experimental characterization, the detailed physics simulation of both signal and backgrounds, the complete design and the realization of the thick shielding, the preparation of the interfaces with the antineutrino detector, including the safety and security aspects.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-10-01, End date: 2018-09-30
Project acronym AAA
Project Adaptive Actin Architectures
Researcher (PI) Laurent Blanchoin
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), LS3, ERC-2016-ADG
Summary Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Summary
Although we have extensive knowledge of many important processes in cell biology, including information on many of the molecules involved and the physical interactions among them, we still do not understand most of the dynamical features that are the essence of living systems. This is particularly true for the actin cytoskeleton, a major component of the internal architecture of eukaryotic cells. In living cells, actin networks constantly assemble and disassemble filaments while maintaining an apparent stable structure, suggesting a perfect balance between the two processes. Such behaviors are called “dynamic steady states”. They confer upon actin networks a high degree of plasticity allowing them to adapt in response to external changes and enable cells to adjust to their environments. Despite their fundamental importance in the regulation of cell physiology, the basic mechanisms that control the coordinated dynamics of co-existing actin networks are poorly understood. In the AAA project, first, we will characterize the parameters that allow the coupling among co-existing actin networks at steady state. In vitro reconstituted systems will be used to control the actin nucleation patterns, the closed volume of the reaction chamber and the physical interaction of the networks. We hope to unravel the mechanism allowing the global coherence of a dynamic actin cytoskeleton. Second, we will use our unique capacity to perform dynamic micropatterning, to add or remove actin nucleation sites in real time, in order to investigate the ability of dynamic networks to adapt to changes and the role of coupled network dynamics in this emergent property. In this part, in vitro experiments will be complemented by the analysis of actin network remodeling in living cells. In the end, our project will provide a comprehensive understanding of how the adaptive response of the cytoskeleton derives from the complex interplay between its biochemical, structural and mechanical properties.
Max ERC Funding
2 349 898 €
Duration
Start date: 2017-09-01, End date: 2022-08-31
Project acronym ACTAR TPC
Project Active Target and Time Projection Chamber
Researcher (PI) Gwen Grinyer
Host Institution (HI) GRAND ACCELERATEUR NATIONAL D'IONS LOURDS
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Summary
The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Max ERC Funding
1 290 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien André Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym AdS-CFT-solvable
Project Origins of integrability in AdS/CFT correspondence
Researcher (PI) Vladimir Kazakov
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2012-ADG_20120216
Summary Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Summary
Fundamental interactions in nature are well described by quantum gauge fields in 4 space-time dimensions (4d). When the strength of gauge interaction is weak the Feynman perturbation techniques are very efficient for the description of most of the experimentally observable consequences of the Standard model and for the study of high energy processes in QCD.
But in the intermediate and strong coupling regime, such as the relatively small energies in QCD, the perturbation theory fails leaving us with no reliable analytic methods (except the Monte-Carlo simulation). The project aims at working out new analytic and computational methods for strongly coupled gauge theories in 4d. We will employ for that two important discoveries: 1) the gauge-string duality (AdS/CFT correspondence) relating certain strongly coupled gauge Conformal Field
Theories to the weakly coupled string theories on Anty-deSitter space; 2) the solvability, or integrability of maximally supersymmetric (N=4) 4d super Yang-Mills (SYM) theory in multicolor limit. Integrability made possible pioneering exact numerical and analytic results in the N=4 multicolor SYM at any coupling, effectively summing up all 4d Feynman diagrams. Recently, we conjectured a system of functional equations - the AdS/CFT Y-system – for the exact spectrum of anomalous dimensions of all local operators in N=4 SYM. The conjecture has passed all available checks. My project is aimed at the understanding of origins of this, still mysterious integrability. Deriving the AdS/CFT Y-system from the first principles on both sides of gauge-string duality should provide a long-awaited proof of the AdS/CFT correspondence itself. I plan to use the Y-system to study the systematic weak and strong coupling expansions and the so called BFKL limit, as well as for calculation of multi-point correlation functions of N=4 SYM. We hope on new insights into the strong coupling dynamics of less supersymmetric gauge theories and of QCD.
Max ERC Funding
1 456 140 €
Duration
Start date: 2013-11-01, End date: 2018-10-31
Project acronym ALOGLADIS
Project From Anderson localization to Bose, Fermi and spin glasses in disordered ultracold gases
Researcher (PI) Laurent Sanchez-Palencia
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Summary
The field of disordered quantum gases is developing rapidly. Dramatic progress has been achieved recently and first experimental observation of one-dimensional Anderson localization (AL) of matterwaves has been reported using Bose-Einstein condensates in controlled disorder (in our group at Institut d'Optique and at LENS; Nature, 2008). This dramatic success results from joint theoretical and experimental efforts, we have contributed to. Most importantly, it opens unprecedented routes to pursue several outstanding challenges in the multidisciplinary field of disordered systems, which, after fifty years of Anderson localization, is more active than ever.
This theoretical project aims at further developing the emerging field of disordered quantum gases towards novel challenges. Our aim is twofold. First, we will propose and analyze schemes where experiments on ultracold atoms can address unsolved issues: AL in dimensions higher than one, effects of inter-atomic interactions on AL, strongly-correlated disordered gases and quantum simulators for spin systems (spin glasses). Second, by taking into account specific features of ultracold atoms, beyond standard toy-models, we will raise and study new questions which have not been addressed before (eg long-range correlations of speckle potentials, finite-size effects, controlled interactions). Both aspects would open new frontiers to disordered quantum gases and offer new possibilities to shed new light on highly debated issues.
Our main concerns are thus to (i) study situations relevant to experiments, (ii) develop new approaches, applicable to ultracold atoms, (iii) identify key observables, and (iv) propose new challenging experiments. In this project, we will benefit from the original situation of our theory team: It is independent but forms part of a larger group (lead by A. Aspect), which is a world-leader in experiments on disordered quantum gases, we have already developed close collaborative relationship with.
Max ERC Funding
985 200 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym AltCheM
Project In vivo functional screens to decipher mechanisms of stochastically- and mutationally-induced chemoresistance in Acute Myeloid Leukemia
Researcher (PI) Alexandre PUISSANT
Host Institution (HI) INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Acute Myeloid Leukemia (AML), the most common leukemia diagnosed in adults, represents the paradigm of resistance to front-line therapies in hematology. Indeed, AML is so genetically complex that only few targeted therapies are currently tested in this disease and chemotherapy remains the only standard treatment for AML since the past four decades. Despite an initial sustained remission achieved by chemotherapeutic agents, almost all patients relapse with a chemoresistant minimal residual disease (MRD). The goal of my proposal is to characterize the still poorly understood biological mechanisms underlying persistence and emergence of MRD.
MRD is the consequence of the re-expansion of leukemia-initiating cells that are intrinsically more resistant to chemotherapy. This cell fraction may be stochastically more prone to survive front-line therapy regardless of their mutational status (the stochastic model), or genetically predetermined to resist by virtue of a collection of chemoprotective mutations (the mutational model).
I have already generated in mice, by consecutive rounds of chemotherapy, a stochastic MLL-AF9-driven chemoresistance model that I examined by RNA-sequencing. I will pursue the comprehensive cell autonomous and cell non-autonomous characterization of this chemoresistant AML disease using whole-exome and ChIP-sequencing.
To establish a mutationally-induced chemoresistant mouse model, I will conduct an innovative in vivo screen using pooled mutant open reading frame and shRNA libraries in order to predict which combinations of mutations, among those already known in AML, actively promote chemoresistance.
Finally, by combining genomic profiling and in vivo shRNA screening experiments, I will decipher the molecular mechanisms and identify the functional effectors of these two modes of resistance. Ultimately, I will then be able to firmly establish the fundamental relevance of the stochastic and/or the mutational model of chemoresistance for MRD genesis.
Summary
Acute Myeloid Leukemia (AML), the most common leukemia diagnosed in adults, represents the paradigm of resistance to front-line therapies in hematology. Indeed, AML is so genetically complex that only few targeted therapies are currently tested in this disease and chemotherapy remains the only standard treatment for AML since the past four decades. Despite an initial sustained remission achieved by chemotherapeutic agents, almost all patients relapse with a chemoresistant minimal residual disease (MRD). The goal of my proposal is to characterize the still poorly understood biological mechanisms underlying persistence and emergence of MRD.
MRD is the consequence of the re-expansion of leukemia-initiating cells that are intrinsically more resistant to chemotherapy. This cell fraction may be stochastically more prone to survive front-line therapy regardless of their mutational status (the stochastic model), or genetically predetermined to resist by virtue of a collection of chemoprotective mutations (the mutational model).
I have already generated in mice, by consecutive rounds of chemotherapy, a stochastic MLL-AF9-driven chemoresistance model that I examined by RNA-sequencing. I will pursue the comprehensive cell autonomous and cell non-autonomous characterization of this chemoresistant AML disease using whole-exome and ChIP-sequencing.
To establish a mutationally-induced chemoresistant mouse model, I will conduct an innovative in vivo screen using pooled mutant open reading frame and shRNA libraries in order to predict which combinations of mutations, among those already known in AML, actively promote chemoresistance.
Finally, by combining genomic profiling and in vivo shRNA screening experiments, I will decipher the molecular mechanisms and identify the functional effectors of these two modes of resistance. Ultimately, I will then be able to firmly establish the fundamental relevance of the stochastic and/or the mutational model of chemoresistance for MRD genesis.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym ANDLICA
Project Anderson Localization of Light by Cold Atoms
Researcher (PI) Robin KAISER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Summary
I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Max ERC Funding
2 490 717 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym APPL
Project Anionic PhosPhoLipids in plant receptor kinase signaling
Researcher (PI) Yvon Jaillais
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS3, ERC-2013-StG
Summary "In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Summary
"In plants, receptor kinases form the largest family of plasma membrane (PM) receptors and they are involved in virtually all aspects of the plant life, including development, immunity and reproduction. In animals, key molecules that orchestrate the recruitment of signaling proteins to membranes are anionic phospholipids (e.g. phosphatidylinositol phosphate or PIPs). Besides, recent reports in animal and yeast cells suggest the existence of PM nanodomains that are independent of cholesterol and lipid phase and rely on anionic phospholipids as well as electrostatic protein/lipid interactions. Strikingly, we know very little on the role of anionic phospholipids in plant signaling. However, our preliminary data suggest that BKI1, an inhibitory protein of the steroid receptor kinase BRI1, interacts with various PIPs in vitro and is likely targeted to the PM by electrostatic interactions with these anionic lipids. These results open the possibility that BRI1, but also other receptor kinases, might be regulated by anionic phospholipids in plants. Here, we propose to analyze the function of anionic phospholipids in BRI1 signaling, using the root epidermis as a model system. First, we will ask what are the lipids that control membrane surface charge in this tissue and recruit BR-signaling component to the PM. Second, we will probe the presence of PIP-enriched nanodomains at the plant PM using super-resolution microscopy techniques and investigate the roles of these domains in BRI1 signaling. Finally, we will analyze the function of the BKI1-related plant-specific family of anionic phospholipid effectors in plant development. In summary, using a transversal approach ranging from in vitro studies to in vivo validation and whole organism physiology, this work will unravel the interplay between anionic phospholipids and receptor signaling in plants."
Max ERC Funding
1 797 840 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ARENA
Project Arrays of entangled atoms
Researcher (PI) Antoine Browaeys
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Summary
The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Max ERC Funding
1 449 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30