Project acronym ALPHA
Project Alpha Shape Theory Extended
Researcher (PI) Herbert Edelsbrunner
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Advanced Grant (AdG), PE6, ERC-2017-ADG
Summary Alpha shapes were invented in the early 80s of last century, and their implementation in three dimensions in the early 90s was at the forefront of the exact arithmetic paradigm that enabled fast and correct geometric software. In the late 90s, alpha shapes motivated the development of the wrap algorithm for surface reconstruction, and of persistent homology, which was the starting point of rapidly expanding interest in topological algorithms aimed at data analysis questions.
We now see alpha shapes, wrap complexes, and persistent homology as three aspects of a larger theory, which we propose to fully develop. This viewpoint was a long time coming and finds its clear expression within a generalized
version of discrete Morse theory. This unified framework offers new opportunities, including
(I) the adaptive reconstruction of shapes driven by the cavity structure;
(II) the stochastic analysis of all aspects of the theory;
(III) the computation of persistence of dense data, both in scale and in depth;
(IV) the study of long-range order in periodic and near-periodic point configurations.
These capabilities will significantly deepen as well as widen the theory and enable new applications in the sciences. To gain focus, we concentrate on low-dimensional applications in structural molecular biology and particle systems.
Summary
Alpha shapes were invented in the early 80s of last century, and their implementation in three dimensions in the early 90s was at the forefront of the exact arithmetic paradigm that enabled fast and correct geometric software. In the late 90s, alpha shapes motivated the development of the wrap algorithm for surface reconstruction, and of persistent homology, which was the starting point of rapidly expanding interest in topological algorithms aimed at data analysis questions.
We now see alpha shapes, wrap complexes, and persistent homology as three aspects of a larger theory, which we propose to fully develop. This viewpoint was a long time coming and finds its clear expression within a generalized
version of discrete Morse theory. This unified framework offers new opportunities, including
(I) the adaptive reconstruction of shapes driven by the cavity structure;
(II) the stochastic analysis of all aspects of the theory;
(III) the computation of persistence of dense data, both in scale and in depth;
(IV) the study of long-range order in periodic and near-periodic point configurations.
These capabilities will significantly deepen as well as widen the theory and enable new applications in the sciences. To gain focus, we concentrate on low-dimensional applications in structural molecular biology and particle systems.
Max ERC Funding
1 678 432 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym ATMEN
Project Atomic precision materials engineering
Researcher (PI) Toma SUSI
Host Institution (HI) UNIVERSITAT WIEN
Call Details Starting Grant (StG), PE5, ERC-2017-STG
Summary Despite more than fifty years of scientific progress since Richard Feynman's 1959 vision for nanotechnology, there is only one way to manipulate individual atoms in materials: scanning tunneling microscopy. Since the late 1980s, its atomically sharp tip has been used to move atoms over clean metal surfaces held at cryogenic temperatures. Scanning transmission electron microscopy, on the other hand, has been able to resolve atoms only more recently by focusing the electron beam with sub-atomic precision. This is especially useful in the two-dimensional form of hexagonally bonded carbon called graphene, which has superb electronic and mechanical properties. Several ways to further engineer those have been proposed, including by doping the structure with substitutional heteroatoms such as boron, nitrogen, phosphorus and silicon. My recent discovery that the scattering of the energetic imaging electrons can cause a silicon impurity to move through the graphene lattice has revealed a potential for atomically precise manipulation using the Ångström-sized electron probe. To develop this into a practical technique, improvements in the description of beam-induced displacements, advances in heteroatom implantation, and a concerted effort towards the automation of manipulations are required. My project tackles these in a multidisciplinary effort combining innovative computational techniques with pioneering experiments in an instrument where a low-energy ion implantation chamber is directly connected to an advanced electron microscope. To demonstrate the power of the method, I will prototype an atomic memory with an unprecedented memory density, and create heteroatom quantum corrals optimized for their plasmonic properties. The capability for atom-scale engineering of covalent materials opens a new vista for nanotechnology, pushing back the boundaries of the possible and allowing a plethora of materials science questions to be studied at the ultimate level of control.
Summary
Despite more than fifty years of scientific progress since Richard Feynman's 1959 vision for nanotechnology, there is only one way to manipulate individual atoms in materials: scanning tunneling microscopy. Since the late 1980s, its atomically sharp tip has been used to move atoms over clean metal surfaces held at cryogenic temperatures. Scanning transmission electron microscopy, on the other hand, has been able to resolve atoms only more recently by focusing the electron beam with sub-atomic precision. This is especially useful in the two-dimensional form of hexagonally bonded carbon called graphene, which has superb electronic and mechanical properties. Several ways to further engineer those have been proposed, including by doping the structure with substitutional heteroatoms such as boron, nitrogen, phosphorus and silicon. My recent discovery that the scattering of the energetic imaging electrons can cause a silicon impurity to move through the graphene lattice has revealed a potential for atomically precise manipulation using the Ångström-sized electron probe. To develop this into a practical technique, improvements in the description of beam-induced displacements, advances in heteroatom implantation, and a concerted effort towards the automation of manipulations are required. My project tackles these in a multidisciplinary effort combining innovative computational techniques with pioneering experiments in an instrument where a low-energy ion implantation chamber is directly connected to an advanced electron microscope. To demonstrate the power of the method, I will prototype an atomic memory with an unprecedented memory density, and create heteroatom quantum corrals optimized for their plasmonic properties. The capability for atom-scale engineering of covalent materials opens a new vista for nanotechnology, pushing back the boundaries of the possible and allowing a plethora of materials science questions to be studied at the ultimate level of control.
Max ERC Funding
1 497 202 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym Bits2Cosmology
Project Time-domain Gibbs sampling: From bits to inflationary gravitational waves
Researcher (PI) Hans Kristian ERIKSEN
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), PE9, ERC-2017-COG
Summary The detection of primordial gravity waves created during the Big Bang ranks among the greatest potential intellectual achievements in modern science. During the last few decades, the instrumental progress necessary to achieve this has been nothing short of breathtaking, and we today are able to measure the microwave sky with better than one-in-a-million precision. However, from the latest ultra-sensitive experiments such as BICEP2 and Planck, it is clear that instrumental sensitivity alone will not be sufficient to make a robust detection of gravitational waves. Contamination in the form of astrophysical radiation from the Milky Way, for instance thermal dust and synchrotron radiation, obscures the cosmological signal by orders of magnitude. Even more critically, though, are second-order interactions between this radiation and the instrument characterization itself that lead to a highly non-linear and complicated problem.
I propose a ground-breaking solution to this problem that allows for joint estimation of cosmological parameters, astrophysical components, and instrument specifications. The engine of this method is called Gibbs sampling, which I have already applied extremely successfully to basic CMB component separation. The new and ciritical step is to apply this method to raw time-ordered observations observed directly by the instrument, as opposed to pre-processed frequency maps. While representing a ~100-fold increase in input data volume, this step is unavoidable in order to break through the current foreground-induced systematics floor. I will apply this method to the best currently available and future data sets (WMAP, Planck, SPIDER and LiteBIRD), and thereby derive the world's tightest constraint on the amplitude of inflationary gravitational waves. Additionally, the resulting ancillary science in the form of robust cosmological parameters and astrophysical component maps will represent the state-of-the-art in observational cosmology in years to come.
Summary
The detection of primordial gravity waves created during the Big Bang ranks among the greatest potential intellectual achievements in modern science. During the last few decades, the instrumental progress necessary to achieve this has been nothing short of breathtaking, and we today are able to measure the microwave sky with better than one-in-a-million precision. However, from the latest ultra-sensitive experiments such as BICEP2 and Planck, it is clear that instrumental sensitivity alone will not be sufficient to make a robust detection of gravitational waves. Contamination in the form of astrophysical radiation from the Milky Way, for instance thermal dust and synchrotron radiation, obscures the cosmological signal by orders of magnitude. Even more critically, though, are second-order interactions between this radiation and the instrument characterization itself that lead to a highly non-linear and complicated problem.
I propose a ground-breaking solution to this problem that allows for joint estimation of cosmological parameters, astrophysical components, and instrument specifications. The engine of this method is called Gibbs sampling, which I have already applied extremely successfully to basic CMB component separation. The new and ciritical step is to apply this method to raw time-ordered observations observed directly by the instrument, as opposed to pre-processed frequency maps. While representing a ~100-fold increase in input data volume, this step is unavoidable in order to break through the current foreground-induced systematics floor. I will apply this method to the best currently available and future data sets (WMAP, Planck, SPIDER and LiteBIRD), and thereby derive the world's tightest constraint on the amplitude of inflationary gravitational waves. Additionally, the resulting ancillary science in the form of robust cosmological parameters and astrophysical component maps will represent the state-of-the-art in observational cosmology in years to come.
Max ERC Funding
1 999 205 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym Browsec
Project Foundations and Tools for Client-Side Web Security
Researcher (PI) Matteo MAFFEI
Host Institution (HI) TECHNISCHE UNIVERSITAET WIEN
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary The constantly increasing number of attacks on web applications shows how their rapid development has not been accompanied by adequate security foundations and demonstrates the lack of solid security enforcement tools. Indeed, web applications expose a gigantic attack surface, which hinders a rigorous understanding and enforcement of security properties. Hence, despite the worthwhile efforts to design secure web applications, users for a while will be confronted with vulnerable, or maliciously crafted, code. Unfortunately, end users have no way at present to reliably protect themselves from malicious applications.
BROWSEC will develop a holistic approach to client-side web security, laying its theoretical foundations and developing innovative security enforcement technologies. In particular, BROWSEC will deliver the first client-side tool to secure web applications that is practical, in that it is implemented as an extension and can thus be easily deployed at large, and also provably sound, i.e., backed up by machine-checked proofs that the tool provides end users with the required security guarantees. At the core of the proposal lies a novel monitoring technique, which treats the browser as a blackbox and intercepts its inputs and outputs in order to prevent dangerous information flows. With this lightweight monitoring approach, we aim at enforcing strong security properties without requiring any expensive and, given the dynamic nature of web applications, statically infeasible program analysis.
BROWSEC is thus a multidisciplinary research effort, promising practical impact and delivering breakthrough advancements in various disciplines, such as web security, JavaScript semantics, software engineering, and program verification.
Summary
The constantly increasing number of attacks on web applications shows how their rapid development has not been accompanied by adequate security foundations and demonstrates the lack of solid security enforcement tools. Indeed, web applications expose a gigantic attack surface, which hinders a rigorous understanding and enforcement of security properties. Hence, despite the worthwhile efforts to design secure web applications, users for a while will be confronted with vulnerable, or maliciously crafted, code. Unfortunately, end users have no way at present to reliably protect themselves from malicious applications.
BROWSEC will develop a holistic approach to client-side web security, laying its theoretical foundations and developing innovative security enforcement technologies. In particular, BROWSEC will deliver the first client-side tool to secure web applications that is practical, in that it is implemented as an extension and can thus be easily deployed at large, and also provably sound, i.e., backed up by machine-checked proofs that the tool provides end users with the required security guarantees. At the core of the proposal lies a novel monitoring technique, which treats the browser as a blackbox and intercepts its inputs and outputs in order to prevent dangerous information flows. With this lightweight monitoring approach, we aim at enforcing strong security properties without requiring any expensive and, given the dynamic nature of web applications, statically infeasible program analysis.
BROWSEC is thus a multidisciplinary research effort, promising practical impact and delivering breakthrough advancements in various disciplines, such as web security, JavaScript semantics, software engineering, and program verification.
Max ERC Funding
1 990 000 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym CombaTCancer
Project Rational combination therapies for metastatic cancer
Researcher (PI) Anna Obenauf
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Call Details Starting Grant (StG), LS4, ERC-2017-STG
Summary Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Summary
Targeted therapy (TT) is frequently used to treat metastatic cancer. Although TT can achieve effective tumor control for several months, durable treatment responses are rare, due to emergence of aggressive, drug-resistant clones (RCs) with high metastatic competence. Tumor heterogeneity and plasticity result in multifaceted resistance mechanisms and targeting RCs poses a daunting challenge.
To better understand the clinical emergence of RCs, my work focuses on the poorly understood events during TT-induced tumor regression. We recently reported that during this phase drug-responsive cancer cells release a therapy-induced secretome, which remodels the tumor microenvironment (TME) and propagates disease relapse by promoting the survival of drug-sensitive cells and stimulating the outgrowth of RCs. Consequently, intervening with combination therapies during the tumor regression period has the potential to prevent the clinical emergence of RCs in the first place.
Here, we outline strategies to (1) understand how RCs emerge and (2) to leverage our findings on the TME remodeling for combination therapies. First, we will develop a novel and innovative parental clone-lookup method, that will allow us to identify and isolate treatment-naïve, parental clones (PCs) that gave rise to RCs. In functional experiments, we will assess (i) whether PCs were already resistant before or developed resistance during TT, (ii) whether PCs have a higher susceptibility to develop resistance than random clones, and (iii) the mechanistic basis for metastatic competence in different clones. Second, we will study the TT-induced TME remodeling, focusing on the effects on tumor vasculature and immune cells. We will utilize our results to target PCs and RCs by combining TT in the phase of tumor regression with other therapies, such as immunotherapies. Our study will provide new mechanistic insights into the biological processes during tumor regression and aims for novel therapeutic strategies.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym CoMoQuant
Project Correlated Molecular Quantum Gases in Optical Lattices
Researcher (PI) Hanns-Christoph NAEGERL
Host Institution (HI) UNIVERSITAET INNSBRUCK
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout.
The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction.
The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.
Summary
In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout.
The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction.
The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.
Max ERC Funding
2 356 117 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym Daphne
Project Circuits of Visual Attention
Researcher (PI) Maximilian Jösch
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGYAUSTRIA
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The evolutionary arms race has optimized and shaped the way animals attend to relevant sensory stimuli in an ever-changing environment. This is a complex task, because the vast majority of sensory experiences are not relevant. In humans, attentional disorders are a serious public health concern because of its high prevalence, but its causes are mostly unknown. In this proposal, I will explore the neuronal mechanisms used by the nervous system to attend visual cues to enable appropriate behaviors.
We will combine cutting edge imaging techniques, optogenetic interventions, behavioral read outs and targeted connectomics to study the neuronal transformations of the mouse Superior Colliculus (SC), an evolutionary conserved midbrain area known to process sensorimotor transformations and to be involved in the allocation of attention. First, this work will reveal a detailed description of visual representation in the SC, focusing on understanding how defined retinal information-streams, like motion and color, contribute to these properties. Second, we will characterize sensorimotor transformations instructed by the SC. The combination of the previous two objectives will determine mechanisms of visual saliency and sensory driven attention (“bottom-up” attention). Finally, we will explore the neuronal mechanisms of attention by studying the modulatory effect of higher brain areas (“top-down” attention) on sensory transformation and multisensory integration in the SC.
Taken together, this proposal aims to understand principles underlying sensorimotor transformation and build a framework to study attention in health and disease.
Summary
The evolutionary arms race has optimized and shaped the way animals attend to relevant sensory stimuli in an ever-changing environment. This is a complex task, because the vast majority of sensory experiences are not relevant. In humans, attentional disorders are a serious public health concern because of its high prevalence, but its causes are mostly unknown. In this proposal, I will explore the neuronal mechanisms used by the nervous system to attend visual cues to enable appropriate behaviors.
We will combine cutting edge imaging techniques, optogenetic interventions, behavioral read outs and targeted connectomics to study the neuronal transformations of the mouse Superior Colliculus (SC), an evolutionary conserved midbrain area known to process sensorimotor transformations and to be involved in the allocation of attention. First, this work will reveal a detailed description of visual representation in the SC, focusing on understanding how defined retinal information-streams, like motion and color, contribute to these properties. Second, we will characterize sensorimotor transformations instructed by the SC. The combination of the previous two objectives will determine mechanisms of visual saliency and sensory driven attention (“bottom-up” attention). Finally, we will explore the neuronal mechanisms of attention by studying the modulatory effect of higher brain areas (“top-down” attention) on sensory transformation and multisensory integration in the SC.
Taken together, this proposal aims to understand principles underlying sensorimotor transformation and build a framework to study attention in health and disease.
Max ERC Funding
1 446 542 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym GEL-SYS
Project Smart HydroGEL SYStems – From Bioinspired Design to Soft Electronics and Machines
Researcher (PI) Martin KALTENBRUNNER
Host Institution (HI) UNIVERSITAT LINZ
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Hydrogels evolved as versatile building blocks of life – we all are in essence gel-embodied soft machines. Drawing inspiration from the diversity found in living creatures, GEL-SYS will develop a set of concepts, materials approaches and design rules for wide ranging classes of soft, hydrogel-based electronic, ionic and photonic devices in three core aims.
Aim (A) will pursue a high level of complexity in soft, yet tough biomimetic devices and machines by introducing nature-inspired instant strong bonds between hydrogels and antagonistic materials – from soft and elastic to hard and brittle. Building on these newly developed interfaces, aim (B) will pursue biocompatible hydrogel electronics with iontronic transducers and large area multimodal sensor arrays for a new class of medical tools and health monitors. Aim (C) will foster the current soft revolution of robotics with self-sensing, transparent grippers not occluding objects and workspace. A soft robotic visual system with hydrogel-based adaptive optical elements and ultraflexible photosensor arrays will allow robots to see while grasping. Autonomous operation will be a central question in soft systems, tackled with tough stretchable batteries and energy harvesting from mechanical motion on small and large scales with soft membranes. GEL-SYS will use our experience on soft, “imperceptible” electronics and devices. By fusing this technology platform with tough hydrogels - nature’s most pluripotent ingredient of soft machines - we aim to create the next generation of bionic systems. The envisioned hybrids promise new discoveries in the nonlinear mechanical responses of soft systems, and may allow exploiting triggered elastic instabilities for unconventional locomotion. Exploring soft matter, intimately united with solid materials, will trigger novel concepts for medical equipment, healthcare, consumer electronics, energy harvesting from renewable sources and in robotics, with imminent impact on our society.
Summary
Hydrogels evolved as versatile building blocks of life – we all are in essence gel-embodied soft machines. Drawing inspiration from the diversity found in living creatures, GEL-SYS will develop a set of concepts, materials approaches and design rules for wide ranging classes of soft, hydrogel-based electronic, ionic and photonic devices in three core aims.
Aim (A) will pursue a high level of complexity in soft, yet tough biomimetic devices and machines by introducing nature-inspired instant strong bonds between hydrogels and antagonistic materials – from soft and elastic to hard and brittle. Building on these newly developed interfaces, aim (B) will pursue biocompatible hydrogel electronics with iontronic transducers and large area multimodal sensor arrays for a new class of medical tools and health monitors. Aim (C) will foster the current soft revolution of robotics with self-sensing, transparent grippers not occluding objects and workspace. A soft robotic visual system with hydrogel-based adaptive optical elements and ultraflexible photosensor arrays will allow robots to see while grasping. Autonomous operation will be a central question in soft systems, tackled with tough stretchable batteries and energy harvesting from mechanical motion on small and large scales with soft membranes. GEL-SYS will use our experience on soft, “imperceptible” electronics and devices. By fusing this technology platform with tough hydrogels - nature’s most pluripotent ingredient of soft machines - we aim to create the next generation of bionic systems. The envisioned hybrids promise new discoveries in the nonlinear mechanical responses of soft systems, and may allow exploiting triggered elastic instabilities for unconventional locomotion. Exploring soft matter, intimately united with solid materials, will trigger novel concepts for medical equipment, healthcare, consumer electronics, energy harvesting from renewable sources and in robotics, with imminent impact on our society.
Max ERC Funding
1 499 975 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym ISLAS
Project Isotopic links to atmopheric water's sources
Researcher (PI) Harald SODEMANN
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Consolidator Grant (CoG), PE10, ERC-2017-COG
Summary The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid lead to errors, which can compensate one another, making them difficult to detect and correct for. Undetectable compensating errors critically limit the understanding of hydrological extremes, the response of the water cycle to a changing climate, and the interpretation of paleoclimate records. Stable water isotopes have a unique potential to serve as the needed constraints, as they provide measures of moisture origin and of the phase change history. We have recently spearheaded a revised view of the atmospheric water cycle, which highlights the importance of connections on a regional scale. This implies that in some areas, all relevant processes can be studied on a regional scale. The Nordic Seas are an ideal case of such a natural laboratory, with distinct evaporation events, shallow transport processes, and swift precipitation formation. Together with recent technological advances in isotope measurements and in-situ sample collection, this will allow us to acquire a new kind of observational data set that will follow the history of water vapour from source to sink. The high-resolution, high-precision isotope data will provide a combined view of established and novel natural isotopic source tracers and set new benchmarks for climate models. A unique palette of sophisticated model tools will allow us to decipher, synthesize and exploit these observations, and to identify compensating errors between water cycle processes in models. In ISLAS, my team and I will thus make unprecedented use of stable isotopes to provide the sought-after constraints for an improved understanding of the hydrological cycle in nature and in climate models, leading towards improved predictions of future climate.
Summary
The hydrological cycle, with its feedbacks related to water vapour and clouds, is the largest source of uncertainty in weather prediction and climate models. Particularly processes that occur on scales smaller than the model grid lead to errors, which can compensate one another, making them difficult to detect and correct for. Undetectable compensating errors critically limit the understanding of hydrological extremes, the response of the water cycle to a changing climate, and the interpretation of paleoclimate records. Stable water isotopes have a unique potential to serve as the needed constraints, as they provide measures of moisture origin and of the phase change history. We have recently spearheaded a revised view of the atmospheric water cycle, which highlights the importance of connections on a regional scale. This implies that in some areas, all relevant processes can be studied on a regional scale. The Nordic Seas are an ideal case of such a natural laboratory, with distinct evaporation events, shallow transport processes, and swift precipitation formation. Together with recent technological advances in isotope measurements and in-situ sample collection, this will allow us to acquire a new kind of observational data set that will follow the history of water vapour from source to sink. The high-resolution, high-precision isotope data will provide a combined view of established and novel natural isotopic source tracers and set new benchmarks for climate models. A unique palette of sophisticated model tools will allow us to decipher, synthesize and exploit these observations, and to identify compensating errors between water cycle processes in models. In ISLAS, my team and I will thus make unprecedented use of stable isotopes to provide the sought-after constraints for an improved understanding of the hydrological cycle in nature and in climate models, leading towards improved predictions of future climate.
Max ERC Funding
1 999 054 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym MC2
Project Mixed-phase clouds and climate (MC2) – from process-level understanding to large-scale impacts
Researcher (PI) Trude STORELVMO
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE10, ERC-2017-STG
Summary The importance of mixed-phase clouds (i.e. clouds in which liquid and ice may co-exist) for weather and climate has become increasingly evident in recent years. We now know that a majority of the precipitation reaching Earth’s surface originates from mixed-phase clouds, and the way cloud phase changes under global warming has emerged as a critically important climate feedback. Atmospheric aerosols may also have affected climate via mixed-phase clouds, but the magnitude and even sign of this effect is currently unknown. Satellite observations have recently revealed that cloud phase is misrepresented in global climate models (GCMs), suggesting systematic GCM biases in precipitation formation and cloud-climate feedbacks. Such biases give us reason to doubt GCM projections of the climate response to CO2 increases, or to changing atmospheric aerosol loadings. This proposal seeks to address the above issues, through a multi-angle and multi-tool approach: (i) By conducting field measurements of cloud phase at mid- and high latitudes, we seek to identify the small-scale structure of mixed-phase clouds. (ii) Large-eddy simulations will then be employed to identify the underlying physics responsible for the observed structures, and the field measurements will provide case studies for regional cloud-resolving modelling in order to test and revise state-of-the-art cloud microphysics parameterizations. (iii) GCMs, with revised microphysics parameterizations, will be confronted with cloud phase constraints available from space. (iv) Finally, the same GCMs will be used to re-evaluate the climate impact of mixed-phase clouds in terms of their contribution to climate forcings and feedbacks. Through this synergistic combination of tools for a multi-scale study of mixed-phase clouds, the proposed research has the potential to bring the field of climate science forward, from improved process-level understanding at small scales, to better climate change predictions on the global scale.
Summary
The importance of mixed-phase clouds (i.e. clouds in which liquid and ice may co-exist) for weather and climate has become increasingly evident in recent years. We now know that a majority of the precipitation reaching Earth’s surface originates from mixed-phase clouds, and the way cloud phase changes under global warming has emerged as a critically important climate feedback. Atmospheric aerosols may also have affected climate via mixed-phase clouds, but the magnitude and even sign of this effect is currently unknown. Satellite observations have recently revealed that cloud phase is misrepresented in global climate models (GCMs), suggesting systematic GCM biases in precipitation formation and cloud-climate feedbacks. Such biases give us reason to doubt GCM projections of the climate response to CO2 increases, or to changing atmospheric aerosol loadings. This proposal seeks to address the above issues, through a multi-angle and multi-tool approach: (i) By conducting field measurements of cloud phase at mid- and high latitudes, we seek to identify the small-scale structure of mixed-phase clouds. (ii) Large-eddy simulations will then be employed to identify the underlying physics responsible for the observed structures, and the field measurements will provide case studies for regional cloud-resolving modelling in order to test and revise state-of-the-art cloud microphysics parameterizations. (iii) GCMs, with revised microphysics parameterizations, will be confronted with cloud phase constraints available from space. (iv) Finally, the same GCMs will be used to re-evaluate the climate impact of mixed-phase clouds in terms of their contribution to climate forcings and feedbacks. Through this synergistic combination of tools for a multi-scale study of mixed-phase clouds, the proposed research has the potential to bring the field of climate science forward, from improved process-level understanding at small scales, to better climate change predictions on the global scale.
Max ERC Funding
1 500 000 €
Duration
Start date: 2018-03-01, End date: 2023-02-28