Project acronym 15CBOOKTRADE
Project The 15th-century Book Trade: An Evidence-based Assessment and Visualization of the Distribution, Sale, and Reception of Books in the Renaissance
Researcher (PI) Cristina Dondi
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Consolidator Grant (CoG), SH6, ERC-2013-CoG
Summary The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Summary
The idea that underpins this project is to use the material evidence from thousands of surviving 15th-c. books, as well as unique documentary evidence — the unpublished ledger of a Venetian bookseller in the 1480s which records the sale of 25,000 printed books with their prices — to address four fundamental questions relating to the introduction of printing in the West which have so far eluded scholarship, partly because of lack of evidence, partly because of the lack of effective tools to deal with existing evidence. The book trade differs from other trades operating in the medieval and early modern periods in that the goods traded survive in considerable numbers. Not only do they survive, but many of them bear stratified evidence of their history in the form of marks of ownership, prices, manuscript annotations, binding and decoration styles. A British Academy pilot project conceived by the PI produced a now internationally-used database which gathers together this kind of evidence for thousands of surviving 15th-c. printed books. For the first time, this makes it possible to track the circulation of books, their trade routes and later collecting, across Europe and the USA, and throughout the centuries. The objectives of this project are to examine (1) the distribution and trade-routes, national and international, of 15th-c. printed books, along with the identity of the buyers and users (private, institutional, religious, lay, female, male, and by profession) and their reading practices; (2) the books' contemporary market value; (3) the transmission and dissemination of the texts they contain, their survival and their loss (rebalancing potentially skewed scholarship); and (4) the circulation and re-use of the illustrations they contain. Finally, the project will experiment with the application of scientific visualization techniques to represent, geographically and chronologically, the movement of 15th-c. printed books and of the texts they contain.
Max ERC Funding
1 999 172 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym 2DIR SPECTROMETER
Project A step-change in sensitivity for two dimensional laser infrared spectroscopy
Researcher (PI) Jasper VAN THOR
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Proof of Concept (PoC), PC1, ERC-2013-PoC
Summary "Here, we propose a novel design for a significantly improved detector for the emerging field of coherent two-dimension infrared (2DIR) spectroscopy, which is an optical analog of Nuclear Magnetic Resonance spectroscopy (NMR). 2DIR is a cutting edge technique which is rapidly growing and has applications in subjects as diverse as energy sciences, biophysics, biomedical research and physical chemistry. Currently, the single most important technical problem that is generally agreed to limit applications of the methodology is the sensitivity with which the signals are measured. Having worked on multiple stabilisation techniques during the ERC funded research it was realised that a straightforward design alteration of the infrared detector will improve the sensitivity very significantly, theoretically by more than one order of magnitude. Here, the technical principles are explained, and a plan for commercialising the instrument in collaboration with the current market leader - Infrared System Development Corp. (ISDC) -. We apply for funding to develop the prototype."
Summary
"Here, we propose a novel design for a significantly improved detector for the emerging field of coherent two-dimension infrared (2DIR) spectroscopy, which is an optical analog of Nuclear Magnetic Resonance spectroscopy (NMR). 2DIR is a cutting edge technique which is rapidly growing and has applications in subjects as diverse as energy sciences, biophysics, biomedical research and physical chemistry. Currently, the single most important technical problem that is generally agreed to limit applications of the methodology is the sensitivity with which the signals are measured. Having worked on multiple stabilisation techniques during the ERC funded research it was realised that a straightforward design alteration of the infrared detector will improve the sensitivity very significantly, theoretically by more than one order of magnitude. Here, the technical principles are explained, and a plan for commercialising the instrument in collaboration with the current market leader - Infrared System Development Corp. (ISDC) -. We apply for funding to develop the prototype."
Max ERC Funding
149 999 €
Duration
Start date: 2013-11-01, End date: 2014-10-31
Project acronym 3D-E
Project 3D Engineered Environments for Regenerative Medicine
Researcher (PI) Ruth Elizabeth Cameron
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary "This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Summary
"This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Max ERC Funding
2 486 267 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym 3D-QUEST
Project 3D-Quantum Integrated Optical Simulation
Researcher (PI) Fabio Sciarrino
Host Institution (HI) UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Call Details Starting Grant (StG), PE2, ERC-2012-StG_20111012
Summary "Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Summary
"Quantum information was born from the merging of classical information and quantum physics. Its main objective consists of understanding the quantum nature of information and learning how to process it by using physical systems which operate by following quantum mechanics laws. Quantum simulation is a fundamental instrument to investigate phenomena of quantum systems dynamics, such as quantum transport, particle localizations and energy transfer, quantum-to-classical transition, and even quantum improved computation, all tasks that are hard to simulate with classical approaches. Within this framework integrated photonic circuits have a strong potential to realize quantum information processing by optical systems.
The aim of 3D-QUEST is to develop and implement quantum simulation by exploiting 3-dimensional integrated photonic circuits. 3D-QUEST is structured to demonstrate the potential of linear optics to implement a computational power beyond the one of a classical computer. Such ""hard-to-simulate"" scenario is disclosed when multiphoton-multimode platforms are realized. The 3D-QUEST research program will focus on three tasks of growing difficulty.
A-1. To simulate bosonic-fermionic dynamics with integrated optical systems acting on 2 photon entangled states.
A-2. To pave the way towards hard-to-simulate, scalable quantum linear optical circuits by investigating m-port interferometers acting on n-photon states with n>2.
A-3. To exploit 3-dimensional integrated structures for the observation of new quantum optical phenomena and for the quantum simulation of more complex scenarios.
3D-QUEST will exploit the potential of the femtosecond laser writing integrated waveguides. This technique will be adopted to realize 3-dimensional capabilities and high flexibility, bringing in this way the optical quantum simulation in to new regime."
Max ERC Funding
1 474 800 €
Duration
Start date: 2012-08-01, End date: 2017-07-31
Project acronym 7TReImHo
Project 7kDa TSLP as a novel type of anti-inflammatory agent to re-establish immune homeostasis
Researcher (PI) Maria RESCIGNO
Host Institution (HI) ISTITUTO EUROPEO DI ONCOLOGIA SRL
Call Details Proof of Concept (PoC), PC1, ERC-2012-PoC
Summary Intestinal homeostasis is a complex event that relies on different interactions between the host and the commensal flora, also called microbiota. The microbiota is a source of gene products that are required for several functions linked to digestion and energy harvest, thus it has to be tolerated, but at the same time controlled. We have shown that the capacity to tolerate the microbiota is linked to a close interaction between epithelial cells, that are the first line of defence against luminal microorganisms, and specialized immune cells called dendritic cells, that acquire a tolerogenic phenotype and drive the development of T regulatory cells, capable to control the development of inflammatory responses to bacteria. We have identified several effectors mediating this control and focused on a cytokine called thymic stromal lymphopoietin (TSLP) that is released constitutively by epithelial cells and is strongly downregulated in inflammatory bowel disease (IBD). By contrast, in other inflammatory disorders like allergy or asthma, TSLP has been shown to be upregulated and to mediate disease.
This apparent controversy is solved when considering that TSLP comes in two different isoforms: a short (sTSLP) and a long (lTSLP). sTSLP has been completely neglected in the literature as most of the reagents do not distinguish it from lTSLP. Within the ERC project Dendroworld, we have generated all the tools to study the function of these two isoforms. We discovered that in IBD there is an inverse correlation between sTSLP and lTSLP. lTSLP is drastically upregulated by recruited immune cells, while sTSLP is downregulated in epithelial cells. Hence, we hypothesized and confirmed that the two isoforms had different activities, with the sTSLP being anti-inflammatory and lTSLP being inflammatory.
In this POC we propose scientific and commercialization activities to bring sTSLP to the market as a new class of anti-inflammatory drugs capable of re-establishing immune homeostasis.
Summary
Intestinal homeostasis is a complex event that relies on different interactions between the host and the commensal flora, also called microbiota. The microbiota is a source of gene products that are required for several functions linked to digestion and energy harvest, thus it has to be tolerated, but at the same time controlled. We have shown that the capacity to tolerate the microbiota is linked to a close interaction between epithelial cells, that are the first line of defence against luminal microorganisms, and specialized immune cells called dendritic cells, that acquire a tolerogenic phenotype and drive the development of T regulatory cells, capable to control the development of inflammatory responses to bacteria. We have identified several effectors mediating this control and focused on a cytokine called thymic stromal lymphopoietin (TSLP) that is released constitutively by epithelial cells and is strongly downregulated in inflammatory bowel disease (IBD). By contrast, in other inflammatory disorders like allergy or asthma, TSLP has been shown to be upregulated and to mediate disease.
This apparent controversy is solved when considering that TSLP comes in two different isoforms: a short (sTSLP) and a long (lTSLP). sTSLP has been completely neglected in the literature as most of the reagents do not distinguish it from lTSLP. Within the ERC project Dendroworld, we have generated all the tools to study the function of these two isoforms. We discovered that in IBD there is an inverse correlation between sTSLP and lTSLP. lTSLP is drastically upregulated by recruited immune cells, while sTSLP is downregulated in epithelial cells. Hence, we hypothesized and confirmed that the two isoforms had different activities, with the sTSLP being anti-inflammatory and lTSLP being inflammatory.
In this POC we propose scientific and commercialization activities to bring sTSLP to the market as a new class of anti-inflammatory drugs capable of re-establishing immune homeostasis.
Max ERC Funding
146 917 €
Duration
Start date: 2013-07-01, End date: 2014-06-30
Project acronym A-BINGOS
Project Accreting binary populations in Nearby Galaxies: Observations and Simulations
Researcher (PI) Andreas Zezas
Host Institution (HI) IDRYMA TECHNOLOGIAS KAI EREVNAS
Call Details Consolidator Grant (CoG), PE9, ERC-2013-CoG
Summary "High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Summary
"High-energy observations of our Galaxy offer a good, albeit not complete, picture of the X-ray source populations, in particular the accreting binary sources. Recent ability to study accreting binaries in nearby galaxies has shown that we would be short-sighted if we restricted ourselves to our Galaxy or to a few nearby ones. I propose an ambitious project that involves a comprehensive study of all the galaxies within 10 Mpc for which we can study in detail their X-ray sources and stellar populations. The study will combine data from a unique suite of observatories (Chandra, XMM-Newton, HST, Spitzer) with state-of-the-art theoretical modelling of binary systems. I propose a novel approach that links the accreting binary populations to their parent stellar populations and surpasses any current studies of X-ray binary populations, both in scale and in scope, by: (a) combining methods and results from several different areas of astrophysics (compact objects, binary systems, stellar populations, galaxy evolution); (b) using data from almost the whole electromagnetic spectrum (infrared to X-ray bands); (c) identifying and studying the different sub-populations of accreting binaries; and (d) performing direct comparison between observations and theoretical predictions, over a broad parameter space. The project: (a) will answer the long-standing question of the formation efficiency of accreting binaries in different environments; and (b) will constrain their evolutionary paths. As by-products the project will provide eagerly awaited input to the fields of gravitational-wave sources, γ-ray bursts, and X-ray emitting galaxies at cosmological distances and it will produce a heritage multi-wavelength dataset and library of models for future studies of galaxies and accreting binaries."
Max ERC Funding
1 242 000 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym AAREA
Project The Archaeology of Agricultural Resilience in Eastern Africa
Researcher (PI) Daryl Stump
Host Institution (HI) UNIVERSITY OF YORK
Call Details Starting Grant (StG), SH6, ERC-2013-StG
Summary "The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Summary
"The twin concepts of sustainability and conservation that are so pivotal within current debates regarding economic development and biodiversity protection both contain an inherent temporal dimension, since both refer to the need to balance short-term gains with long-term resource maintenance. Proponents of resilience theory and of development based on ‘indigenous knowledge’ have thus argued for the necessity of including archaeological, historical and palaeoenvironmental components within development project design. Indeed, some have argued that archaeology should lead these interdisciplinary projects on the grounds that it provides the necessary time depth and bridges the social and natural sciences. The project proposed here accepts this logic and endorses this renewed contemporary relevance of archaeological research. However, it also needs to be admitted that moving beyond critiques of the misuse of historical data presents significant hurdles. When presenting results outside the discipline, for example, archaeological projects tend to downplay the poor archaeological visibility of certain agricultural practices, and computer models designed to test sustainability struggle to adequately account for local cultural preferences. This field will therefore not progress unless there is a frank appraisal of archaeology’s strengths and weaknesses. This project will provide this assessment by employing a range of established and groundbreaking archaeological and modelling techniques to examine the development of two east Africa agricultural systems: one at the abandoned site of Engaruka in Tanzania, commonly seen as an example of resource mismanagement and ecological collapse; and another at the current agricultural landscape in Konso, Ethiopia, described by the UN FAO as one of a select few African “lessons from the past”. The project thus aims to assess the sustainability of these systems, but will also assess the role archaeology can play in such debates worldwide."
Max ERC Funding
1 196 701 €
Duration
Start date: 2014-02-01, End date: 2018-01-31
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACOULOMODE
Project Advanced coupling of low order combustor simulations with thermoacoustic modelling and controller design
Researcher (PI) Aimee Morgans
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Summary
"Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Max ERC Funding
1 489 309 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ACRCC
Project Understanding the atmospheric circulation response to climate change
Researcher (PI) Theodore Shepherd
Host Institution (HI) THE UNIVERSITY OF READING
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Computer models based on known physical laws are our primary tool for predicting climate change. Yet the state-of-the-art models exhibit a disturbingly wide range of predictions of future climate change, especially when examined at the regional scale, which has not decreased as the models have become more comprehensive. The reasons for this are not understood. This represents a basic challenge to our fundamental understanding of climate.
The divergence of model projections is presumably related to systematic model errors in the large-scale fluxes of heat, moisture and momentum that control regional aspects of climate. That these errors stubbornly persist in spite of increases in the spatial resolution of the models suggests that they are associated with errors in the representation of unresolved processes, whose effects must be parameterised.
Most attention in climate science has hitherto focused on the thermodynamic aspects of climate. Dynamical aspects, which involve the atmospheric circulation, have received much less attention. However regional climate, including persistent climate regimes and extremes, is strongly controlled by atmospheric circulation patterns, which exhibit chaotic variability and whose representation in climate models depends sensitively on parameterised processes. Moreover the dynamical aspects of model projections are much less robust than the thermodynamic ones. There are good reasons to believe that model bias, the divergence of model projections, and chaotic variability are somehow related, although the relationships are not well understood. This calls for studying them together.
My proposed research will focus on this problem, addressing these three aspects of the atmospheric circulation response to climate change in parallel: (i) diagnosing the sources of model error; (ii) elucidating the relationship between model error and the spread in model projections; (iii) understanding the physical mechanisms of atmospheric variability.
Summary
Computer models based on known physical laws are our primary tool for predicting climate change. Yet the state-of-the-art models exhibit a disturbingly wide range of predictions of future climate change, especially when examined at the regional scale, which has not decreased as the models have become more comprehensive. The reasons for this are not understood. This represents a basic challenge to our fundamental understanding of climate.
The divergence of model projections is presumably related to systematic model errors in the large-scale fluxes of heat, moisture and momentum that control regional aspects of climate. That these errors stubbornly persist in spite of increases in the spatial resolution of the models suggests that they are associated with errors in the representation of unresolved processes, whose effects must be parameterised.
Most attention in climate science has hitherto focused on the thermodynamic aspects of climate. Dynamical aspects, which involve the atmospheric circulation, have received much less attention. However regional climate, including persistent climate regimes and extremes, is strongly controlled by atmospheric circulation patterns, which exhibit chaotic variability and whose representation in climate models depends sensitively on parameterised processes. Moreover the dynamical aspects of model projections are much less robust than the thermodynamic ones. There are good reasons to believe that model bias, the divergence of model projections, and chaotic variability are somehow related, although the relationships are not well understood. This calls for studying them together.
My proposed research will focus on this problem, addressing these three aspects of the atmospheric circulation response to climate change in parallel: (i) diagnosing the sources of model error; (ii) elucidating the relationship between model error and the spread in model projections; (iii) understanding the physical mechanisms of atmospheric variability.
Max ERC Funding
2 489 151 €
Duration
Start date: 2014-03-01, End date: 2020-02-29