Project acronym 2D-4-CO2
Project DESIGNING 2D NANOSHEETS FOR CO2 REDUCTION AND INTEGRATION INTO vdW HETEROSTRUCTURES FOR ARTIFICIAL PHOTOSYNTHESIS
Researcher (PI) Damien VOIRY
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Summary
CO2 reduction reaction (CO2RR) holds great promise for conversion of the green-house gas carbon dioxide into chemical fuels. The absence of catalytic materials demonstrating high performance and high selectivity currently hampers practical demonstration. CO2RR is also limited by the low solubility of CO2 in the electrolyte solution and therefore electrocatalytic reactions in gas phase using gas diffusion electrodes would be preferred. 2D materials have recently emerged as a novel class of electrocatalytic materials thanks to their rich structures and electronic properties. The synthesis of novel 2D catalysts and their implementation into photocatalytic systems would be a major step towards the development of devices for storing solar energy in the form of chemical fuels. With 2D-4-CO2, I propose to: 1) develop novel class of CO2RR catalysts based on conducting 2D nanosheets and 2) demonstrate photocatalytic conversion of CO2 into chemical fuels using structure engineered gas diffusion electrodes made of 2D conducting catalysts. To reach this goal, the first objective of 2D-4-CO2 is to provide guidelines for the development of novel cutting-edge 2D catalysts towards CO2 conversion into chemical fuel. This will be possible by using a multidisciplinary approach based on 2D materials engineering, advanced methods of characterization and novel designs of gas diffusion electrodes for the reduction of CO2 in gas phase. The second objective is to develop practical photocatalytic systems using van der Waals (vdW) heterostructures for the efficient conversion of CO2 into chemical fuels. vdW heterostructures will consist in rational designs of 2D materials and 2D-like materials deposited by atomic layer deposition in order to achieve highly efficient light conversion and prolonged stability. This project will not only enable a deeper understanding of the CO2RR but it will also provide practical strategies for large-scale application of CO2RR for solar fuel production.
Max ERC Funding
1 499 931 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ANDLICA
Project Anderson Localization of Light by Cold Atoms
Researcher (PI) Robin KAISER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2018-ADG
Summary I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Summary
I propose to use large clouds of cold Ytterbium atoms to observe Anderson localization of light in three dimensions, which has challenged theoreticians and experimentalists for many decades.
After the prediction by Anderson of a disorder-induced conductor to insulator transition for electrons, light has been proposed as ideal non interacting waves to explore coherent transport properties in the absence of interactions. The development in experiments and theory over the past several years have shown a route towards the experimental realization of this phase transition.
Previous studies on Anderson localization of light using semiconductor powders or dielectric particles have shown that intrinsic material properties, such as absorption or inelastic scattering of light, need to be taken into account in the interpretation of experimental signatures of Anderson localization. Laser-cooled clouds of atoms avoid the problems of samples used so far to study Anderson localization of light. Ab initio theoretical models, available for cold Ytterbium atoms, have shown that the mere high spatial density of the scattering sample is not sufficient to allow for Anderson localization of photons in three dimensions, but that an additional magnetic field or additional disorder on the level shifts can induce a phase transition in three dimensions.
The role of disorder in atom-light interactions has important consequences for the next generation of high precision atomic clocks and quantum memories. By connecting the mesoscopic physics approach to quantum optics and cooperative scattering, this project will allow better control of cold atoms as building blocks of future quantum technologies. Time-resolved transport experiments will connect super- and subradiant assisted transmission with the extended and localized eigenstates of the system.
Having pioneered studies on weak localization and cooperative scattering enables me to diagnostic strong localization of light by cold atoms.
Max ERC Funding
2 490 717 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ARCHEIS
Project Understanding the onset and impact of Aquatic Resource Consumption in Human Evolution using novel Isotopic tracerS
Researcher (PI) Klervia Marie Madalen JAOUEN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE10, ERC-2018-STG
Summary The onset of the systematic consumption of marine resources is thought to mark a turning point for the hominin lineage. To date, this onset cannot be traced, since classic isotope markers are not preserved beyond 50 - 100 ky. Aquatic food products are essential in human nutrition as the main source of polyunsaturated fatty acids in hunter-gatherer diets. The exploitation of marine resources is also thought to have reduced human mobility and enhanced social and technological complexification. Systematic aquatic food consumption could well have been a distinctive feature of Homo sapiens species among his fellow hominins, and has been linked to the astonishing leap in human intelligence and conscience. Yet, this hypothesis is challenged by the existence of mollusk and marine mammal bone remains at Neanderthal archeological sites. Recent work demonstrated the sensitivity of Zn isotope composition in bioapatite, the mineral part of bones and teeth, to dietary Zn. By combining classic (C and C/N isotope analyses) and innovative techniques (compound specific C/N and bulk Zn isotope analyses), I will develop a suite of sensitive tracers for shellfish, fish and marine mammal consumption. Shellfish consumption will be investigated by comparing various South American and European prehistoric populations from the Atlantic coast associated to shell-midden and fish-mounds. Marine mammal consumption will be traced using an Inuit population of Arctic Canada and the Wairau Bar population of New Zealand. C/N/Zn isotope compositions of various aquatic products will also be assessed, as well as isotope fractionation during intestinal absorption. I will then use the fully calibrated isotope tools to detect and characterize the onset of marine food exploitation in human history, which will answer the question of its specificity to our species. Neanderthal, early modern humans and possibly other hominin remains from coastal and inland sites will be compared in that purpose.
Summary
The onset of the systematic consumption of marine resources is thought to mark a turning point for the hominin lineage. To date, this onset cannot be traced, since classic isotope markers are not preserved beyond 50 - 100 ky. Aquatic food products are essential in human nutrition as the main source of polyunsaturated fatty acids in hunter-gatherer diets. The exploitation of marine resources is also thought to have reduced human mobility and enhanced social and technological complexification. Systematic aquatic food consumption could well have been a distinctive feature of Homo sapiens species among his fellow hominins, and has been linked to the astonishing leap in human intelligence and conscience. Yet, this hypothesis is challenged by the existence of mollusk and marine mammal bone remains at Neanderthal archeological sites. Recent work demonstrated the sensitivity of Zn isotope composition in bioapatite, the mineral part of bones and teeth, to dietary Zn. By combining classic (C and C/N isotope analyses) and innovative techniques (compound specific C/N and bulk Zn isotope analyses), I will develop a suite of sensitive tracers for shellfish, fish and marine mammal consumption. Shellfish consumption will be investigated by comparing various South American and European prehistoric populations from the Atlantic coast associated to shell-midden and fish-mounds. Marine mammal consumption will be traced using an Inuit population of Arctic Canada and the Wairau Bar population of New Zealand. C/N/Zn isotope compositions of various aquatic products will also be assessed, as well as isotope fractionation during intestinal absorption. I will then use the fully calibrated isotope tools to detect and characterize the onset of marine food exploitation in human history, which will answer the question of its specificity to our species. Neanderthal, early modern humans and possibly other hominin remains from coastal and inland sites will be compared in that purpose.
Max ERC Funding
1 361 991 €
Duration
Start date: 2019-03-01, End date: 2024-02-29
Project acronym Atto-Zepto
Project Ultrasensitive Nano-Optomechanical Sensors
Researcher (PI) Olivier ARCIZET
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE2, ERC-2018-COG
Summary By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Summary
By enabling the conversion of forces into measurable displacements, mechanical oscillators have always played a central role in experimental physics. Recent developments in the PI group demonstrated the possibility to realize ultrasensitive and vectorial force field sensing by using suspended SiC nanowires and optical readout of their transverse vibrations. Astonishing sensitivities were obtained at room and dilution temperatures, at the Atto- Zepto-newton level, for which the electron-electron interaction becomes detectable at 100µm.
The goal of the project is to push forward those ultrasensitive nano-optomechanical force sensors, to realize even more challenging explorations of novel fundamental interactions at the quantum-classical interface.
We will develop universal advanced sensing protocols to explore the vectorial structure of fundamental optical, electrostatic or magnetic interactions, and investigate Casimir force fields above nanostructured surfaces, in geometries where it was recently predicted to become repulsive. The second research axis is the one of cavity nano-optomechanics: inserting the ultrasensitive nanowire in a high finesse optical microcavity should enhance the light-nanowire interaction up to the point where a single cavity photon can displace the nanowire by more than its zero point quantum fluctuations. We will investigate this so-called ultrastrong optomechanical coupling regime, and further explore novel regimes in cavity optomechanics, where optical non-linearities at the single photon level become accessible. The last part is dedicated to the exploration of hybrid qubit-mechanical systems, in which nanowire vibrations are magnetically coupled to the spin of a single Nitrogen Vacancy defect in diamond. We will focus on the exploration of spin-dependent forces, aiming at mechanically detecting qubit excitations, opening a novel road towards the generation of non-classical states of motion, and mechanically enhanced quantum sensors.
Max ERC Funding
2 067 905 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BALLISTOP
Project Revealing 1D ballistic charge and spin currents in second order topological insulators
Researcher (PI) helene BOUCHIAT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary One of the greatest recent achievement in Condensed matter physics is the discovery of a new class of materials, Topological Insulators (TI), whose bulk is insulating, while the edges conduct current in a quasi-ideal way. In particular, the 1D edges of 2DTI realize the Quantum Spin Hall state, where current is carried dissipationlessly by two counter-propagating ballistic edge states with a spin orientation locked to that of the propagation direction (a helical edge state). This opens many possibilities, ranging from dissipationless charge and spin transport at room temperature to new avenues for quantum computing. We propose to investigate charge and spin currents in a newly discovered class of TIs, Second Order Topological Insulators (SOTIs), i.e. 3D crystals with insulating bulk and surfaces, but perfectly conducting (topologically protected) 1D helical “hinge” states. Bismuth, despite its well-known semimetallic character, has recently been shown theoretically to belong to this class of materials, explaining our recent intriguing findings on nanowires. Our goal is to reveal, characterize and exploit the unique properties of SOTIs, in particular the high velocity, ballistic, and dissipationless hinge currents. We will probe crystalline bismuth samples with refined new experimental tools. The superconducting proximity effect will reveal the spatial distribution of conduction paths, and test the ballisticity of the hinge modes (that may coexist with non-topological surface modes). High frequency and tunnel spectroscopies of hybrid superconductor/Bi circuits will probe their topological nature, including the existence of Majorana modes. We will use high sensitivity magnetometers to detect the orbital magnetism of SOTI platelets, which should be dominated by topological edge currents. Lastly, we propose to detect the predicted equilibrium spin currents in 2DTIs and SOTIs via the generated electric field, using single electron transistors-based electrometers.
Summary
One of the greatest recent achievement in Condensed matter physics is the discovery of a new class of materials, Topological Insulators (TI), whose bulk is insulating, while the edges conduct current in a quasi-ideal way. In particular, the 1D edges of 2DTI realize the Quantum Spin Hall state, where current is carried dissipationlessly by two counter-propagating ballistic edge states with a spin orientation locked to that of the propagation direction (a helical edge state). This opens many possibilities, ranging from dissipationless charge and spin transport at room temperature to new avenues for quantum computing. We propose to investigate charge and spin currents in a newly discovered class of TIs, Second Order Topological Insulators (SOTIs), i.e. 3D crystals with insulating bulk and surfaces, but perfectly conducting (topologically protected) 1D helical “hinge” states. Bismuth, despite its well-known semimetallic character, has recently been shown theoretically to belong to this class of materials, explaining our recent intriguing findings on nanowires. Our goal is to reveal, characterize and exploit the unique properties of SOTIs, in particular the high velocity, ballistic, and dissipationless hinge currents. We will probe crystalline bismuth samples with refined new experimental tools. The superconducting proximity effect will reveal the spatial distribution of conduction paths, and test the ballisticity of the hinge modes (that may coexist with non-topological surface modes). High frequency and tunnel spectroscopies of hybrid superconductor/Bi circuits will probe their topological nature, including the existence of Majorana modes. We will use high sensitivity magnetometers to detect the orbital magnetism of SOTI platelets, which should be dominated by topological edge currents. Lastly, we propose to detect the predicted equilibrium spin currents in 2DTIs and SOTIs via the generated electric field, using single electron transistors-based electrometers.
Max ERC Funding
2 432 676 €
Duration
Start date: 2020-04-01, End date: 2025-03-31
Project acronym BEBOP
Project Bacterial biofilms in porous structures: from biomechanics to control
Researcher (PI) Yohan, Jean-Michel, Louis DAVIT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE8, ERC-2018-STG
Summary The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.
The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.
The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.
The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.
We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.
Summary
The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.
The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.
The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.
The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.
We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.
Max ERC Funding
1 649 861 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym C0PEP0D
Project Life and death of a virtual copepod in turbulence
Researcher (PI) Christophe ELOY
Host Institution (HI) ECOLE CENTRALE DE MARSEILLE EGIM
Call Details Advanced Grant (AdG), PE8, ERC-2018-ADG
Summary Life is tough for planktonic copepods, constantly washed by turbulent flows. Yet, these millimetric crustaceans dominate the oceans in numbers. What have made them so successful? Copepod antennae are covered with hydrodynamic and chemical sensing hairs that allow copepods to detect preys, predators and mates, although they are blind. How do copepods process this sensing information? How do they extract a meaningful signal from turbulence noise? Today, we do not know.
C0PEP0D hypothesises that reinforcement learning tools can decipher how copepod process hydrodynamic and chemical sensing. Copepods face a problem similar to speech recognition or object detection, two common applications of reinforcement learning. However, copepods only have 1000 neurons, much less than in most artificial neural networks. To approach the simple brain of copepods, we will use Darwinian evolution together with reinforcement learning, with the goal of finding minimal neural networks able to learn.
If we are to build a learning virtual copepod, challenging problems are ahead: we need fast methods to simulate turbulence and animal-flow interactions, new models of hydrodynamic signalling at finite Reynolds number, innovative reinforcement learning algorithms that embrace evolution and experiments with real copepods in turbulence. With these theoretical, numerical and experimental tools, we will address three questions:
Q1: Mating. How do male copepods follow the pheromone trail left by females?
Q2: Finding. How do copepods use hydrodynamic signals to ‘see’?
Q3: Feeding. What are the best feeding strategies in turbulent flow?
C0PEP0D will decipher how copepods process sensing information, but not only that. Because evolution is explicitly considered, it will offer a new perspective on marine ecology and evolution that could inspire artificial sensors. The evolutionary approach of reinforcement learning also offers a promising tool to tackle complex problems in biology and engineering.
Summary
Life is tough for planktonic copepods, constantly washed by turbulent flows. Yet, these millimetric crustaceans dominate the oceans in numbers. What have made them so successful? Copepod antennae are covered with hydrodynamic and chemical sensing hairs that allow copepods to detect preys, predators and mates, although they are blind. How do copepods process this sensing information? How do they extract a meaningful signal from turbulence noise? Today, we do not know.
C0PEP0D hypothesises that reinforcement learning tools can decipher how copepod process hydrodynamic and chemical sensing. Copepods face a problem similar to speech recognition or object detection, two common applications of reinforcement learning. However, copepods only have 1000 neurons, much less than in most artificial neural networks. To approach the simple brain of copepods, we will use Darwinian evolution together with reinforcement learning, with the goal of finding minimal neural networks able to learn.
If we are to build a learning virtual copepod, challenging problems are ahead: we need fast methods to simulate turbulence and animal-flow interactions, new models of hydrodynamic signalling at finite Reynolds number, innovative reinforcement learning algorithms that embrace evolution and experiments with real copepods in turbulence. With these theoretical, numerical and experimental tools, we will address three questions:
Q1: Mating. How do male copepods follow the pheromone trail left by females?
Q2: Finding. How do copepods use hydrodynamic signals to ‘see’?
Q3: Feeding. What are the best feeding strategies in turbulent flow?
C0PEP0D will decipher how copepods process sensing information, but not only that. Because evolution is explicitly considered, it will offer a new perspective on marine ecology and evolution that could inspire artificial sensors. The evolutionary approach of reinforcement learning also offers a promising tool to tackle complex problems in biology and engineering.
Max ERC Funding
2 215 794 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym CARB-City
Project Physico-Chemistry of Carbonaceous Aerosol Pollution in Evolving Cities
Researcher (PI) Alma Hodzic
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE10, ERC-2018-COG
Summary Carbonaceous aerosols (organic and black carbon) remain a major unresolved issue in atmospheric science, especially in urban centers, where they are one of the dominant aerosol constituents and among most toxic to human health. The challenge is twofold: first, our understanding of the sources, sinks and physico-chemical properties of the complex mixture of carbonaceous species is still incomplete; and second, the representation of urban heterogeneities in air quality models is inadequate as they are designed for regional applications.
The CARB-City project proposes the development of an innovative modeling framework that will address both issues by combining molecular-level chemical constraints and city-scale modeling to achieve the following objectives: (WP1) to develop and apply new chemical parameterizations, constrained by an explicit chemical model, for carbonaceous aerosol formation from urban precursors, and (WP2) to examine whether urban heterogeneities in sources and mixing can enhance non-linearities in chemistry of carbonaceous compounds and modify their predicted composition. The new modeling framework will then be applied (WP3) to quantify the contribution of traditional and emerging urban aerosol precursor sources to chemistry and toxicity of carbonaceous aerosols; and (WP4) to assess the effectiveness of greener-city strategies in removing aerosol pollutants.
This work will enhance fundamental scientific understanding as to how key physico-chemical processes control the lifecycle of carbonaceous aerosols in cities, and will improve the predictability of air quality models in terms of composition and toxicity of urban aerosols, and their sensitivity to changes in energy and land use that cities are currently experiencing. The modeling framework will have the required chemical and spatial resolution for assessing human exposure to urban aerosols. This will allow policy makers to optimize urban emission reductions and sustainable urban development.
Summary
Carbonaceous aerosols (organic and black carbon) remain a major unresolved issue in atmospheric science, especially in urban centers, where they are one of the dominant aerosol constituents and among most toxic to human health. The challenge is twofold: first, our understanding of the sources, sinks and physico-chemical properties of the complex mixture of carbonaceous species is still incomplete; and second, the representation of urban heterogeneities in air quality models is inadequate as they are designed for regional applications.
The CARB-City project proposes the development of an innovative modeling framework that will address both issues by combining molecular-level chemical constraints and city-scale modeling to achieve the following objectives: (WP1) to develop and apply new chemical parameterizations, constrained by an explicit chemical model, for carbonaceous aerosol formation from urban precursors, and (WP2) to examine whether urban heterogeneities in sources and mixing can enhance non-linearities in chemistry of carbonaceous compounds and modify their predicted composition. The new modeling framework will then be applied (WP3) to quantify the contribution of traditional and emerging urban aerosol precursor sources to chemistry and toxicity of carbonaceous aerosols; and (WP4) to assess the effectiveness of greener-city strategies in removing aerosol pollutants.
This work will enhance fundamental scientific understanding as to how key physico-chemical processes control the lifecycle of carbonaceous aerosols in cities, and will improve the predictability of air quality models in terms of composition and toxicity of urban aerosols, and their sensitivity to changes in energy and land use that cities are currently experiencing. The modeling framework will have the required chemical and spatial resolution for assessing human exposure to urban aerosols. This will allow policy makers to optimize urban emission reductions and sustainable urban development.
Max ERC Funding
1 727 009 €
Duration
Start date: 2020-01-01, End date: 2024-12-31
Project acronym CENNS
Project Probing new physics with Coherent Elastic Neutrino-Nucleus Scattering and a tabletop experiment
Researcher (PI) Julien Billard
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2018-STG
Summary Ever since the Higgs boson was discovered at the LHC in 2012, we had the confirmation that the Standard Model (SM) of particle physics has to be extended. In parallel, the long lasting Dark Matter (DM) problem, supported by a wealth of evidence ranging from precision cosmology to local astrophysical observations, has been suggesting that new particles should exist. Unfortunately, neither the LHC nor the DM dedicated experiments have significantly detected any exotic signals pointing toward a particular new physics extension of the SM so far.
With this proposal, I want to take a new path in the quest of new physics searches by providing the first high-precision measurement of the neutral current Coherent Elastic Neutrino-Nucleus Scattering (CENNS). By focusing on the sub-100 eV CENNS induced nuclear recoils, my goal is to reach unprecedented sensitivities to various exotic physics scenarios with major implications from cosmology to particle physics, beyond the reach of existing particle physics experiments. These include for instance the existence of sterile neutrinos and of new mediators, that could be related to the DM problem, and the possibility of Non Standard Interactions that would have tremendous implications on the global neutrino physics program.
To this end, I propose to build a kg-scale cryogenic tabletop neutrino experiment with outstanding sensitivity to low-energy nuclear recoils, called CryoCube, that will be deployed at an optimal nuclear reactor site. The key feature of this proposed detector technology is to combine two target materials: Ge-semiconductor and Zn-superconducting metal. I want to push these two detector techniques beyond the state-of-the-art performance to reach sub-100 eV energy thresholds with unparalleled background rejection capabilities.
As my proposed CryoCube detector will reach a 5-sigma level CENNS detection significance in a single day, it will be uniquely positioned to probe new physics extensions beyond the SM.
Summary
Ever since the Higgs boson was discovered at the LHC in 2012, we had the confirmation that the Standard Model (SM) of particle physics has to be extended. In parallel, the long lasting Dark Matter (DM) problem, supported by a wealth of evidence ranging from precision cosmology to local astrophysical observations, has been suggesting that new particles should exist. Unfortunately, neither the LHC nor the DM dedicated experiments have significantly detected any exotic signals pointing toward a particular new physics extension of the SM so far.
With this proposal, I want to take a new path in the quest of new physics searches by providing the first high-precision measurement of the neutral current Coherent Elastic Neutrino-Nucleus Scattering (CENNS). By focusing on the sub-100 eV CENNS induced nuclear recoils, my goal is to reach unprecedented sensitivities to various exotic physics scenarios with major implications from cosmology to particle physics, beyond the reach of existing particle physics experiments. These include for instance the existence of sterile neutrinos and of new mediators, that could be related to the DM problem, and the possibility of Non Standard Interactions that would have tremendous implications on the global neutrino physics program.
To this end, I propose to build a kg-scale cryogenic tabletop neutrino experiment with outstanding sensitivity to low-energy nuclear recoils, called CryoCube, that will be deployed at an optimal nuclear reactor site. The key feature of this proposed detector technology is to combine two target materials: Ge-semiconductor and Zn-superconducting metal. I want to push these two detector techniques beyond the state-of-the-art performance to reach sub-100 eV energy thresholds with unparalleled background rejection capabilities.
As my proposed CryoCube detector will reach a 5-sigma level CENNS detection significance in a single day, it will be uniquely positioned to probe new physics extensions beyond the SM.
Max ERC Funding
1 495 000 €
Duration
Start date: 2019-02-01, End date: 2024-01-31