Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) José María BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 5COFM
Project Five Centuries of Marriages
Researcher (PI) Anna Cabré
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Advanced Grant (AdG), SH6, ERC-2010-AdG_20100407
Summary This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Summary
This long-term research project is based on the data-mining of the Llibres d'Esposalles conserved at the Archives of the Barcelona Cathedral, an extraordinary data source comprising 244 books of marriage licenses records. It covers about 550.000 unions from over 250 parishes of the Diocese between 1451 and 1905. Its impeccable conservation is a miracle in a region where parish archives have undergone massive destruction. The books include data on the tax posed on each couple depending on their social class, on an eight-tiered scale. These data allow for research on multiple aspects of demographic research, especially on the very long run, such as: population estimates, marriage dynamics, cycles, and indirect estimations for fertility, migration and survival, as well as socio-economic studies related to social homogamy, social mobility, and transmission of social and occupational position. Being continuous over five centuries, the source constitutes a unique instrument to study the dynamics of population distribution, the expansion of the city of Barcelona and the constitution of its metropolitan area, as well as the chronology and the geography in the constitution of new social classes.
To this end, a digital library and a database, the Barcelona Historical Marriages Database (BHiMaD), are to be created and completed. An ERC-AG will help doing so while undertaking the research analysis of the database in parallel.
The research team, at the U. Autònoma de Barcelona, involves researchers from the Center for Demo-graphic Studies and the Computer Vision Center experts in historical databases and computer-aided recognition of ancient manuscripts. 5CofM will serve the preservation of the original “Llibres d’Esposalles” and unlock the full potential embedded in the collection.
Max ERC Funding
1 847 400 €
Duration
Start date: 2011-05-01, End date: 2016-04-30
Project acronym Aftermath
Project THE AFTERMATH OF THE EAST ASIAN WAR OF 1592-1598.
Researcher (PI) Rebekah CLEMENTS
Host Institution (HI) UNIVERSITAT AUTONOMA DE BARCELONA
Call Details Starting Grant (StG), SH6, ERC-2017-STG
Summary Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Summary
Aftermath seeks to understand the legacy of the East Asian War of 1592-1598. This conflict involved over 500,000 combatants from Japan, China, and Korea; up to 100,000 Korean civilians were abducted to Japan. The war caused momentous demographic upheaval and widespread destruction, but also had long-lasting cultural impact as a result of the removal to Japan of Korean technology and skilled labourers. The conflict and its aftermath bear striking parallels to events in East Asia during World War 2, and memories of the 16th century war remain deeply resonant in the region. However, the war and its immediate aftermath are also significant because they occurred at the juncture of periods often characterized as “medieval” and “early modern” in the East Asian case. What were the implications for the social, economic, and cultural contours of early modern East Asia? What can this conflict tell us about war “aftermath” across historical periods and about such periodization itself? There is little Western scholarship on the war and few studies in any language cross linguistic, disciplinary, and national boundaries to achieve a regional perspective that reflects the interconnected history of East Asia. Aftermath will radically alter our understanding of the region’s history by providing the first analysis of the state of East Asia as a result of the war. The focus will be on the period up to the middle of the 17th century, but not precluding ongoing effects. The team, with expertise covering Japan, Korea, and China, will investigate three themes: the movement of people and demographic change, the impact on the natural environment, and technological diffusion. The project will be the first large scale investigation to use Japanese, Korean, and Chinese sources to understand the war’s aftermath. It will broaden understandings of the early modern world, and push the boundaries of war legacy studies by exploring the meanings of “aftermath” in the early modern East Asian context.
Max ERC Funding
1 444 980 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AGRIWESTMED
Project Origins and spread of agriculture in the south-western Mediterranean region
Researcher (PI) Maria Leonor Peña Chocarro
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Advanced Grant (AdG), SH6, ERC-2008-AdG
Summary This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Summary
This project focuses on one of the most fascinating events of the long history of the human species: the origins and spread of agriculture. Research over the past 40 years has provided an invaluable dataset on crop domestication and the spread of agriculture into Europe. However, despite the enormous advances in research there are important areas that remain almost unexplored, some of immense interest. This is the case of the western Mediterranean region from where our knowledge is still limited (Iberian Peninsula) or almost inexistent (northern Morocco). The last few years have witnessed a considerable increase in archaeobotany and the effort of a group of Spanish researchers working together in different aspects of agriculture has started to produce the first results. My proposal will approach the study of the arrival of agriculture to the western Mediterranean by exploring different interrelated research areas. The project involves the
application of different techniques (analysis of charred plant remains, pollen and non-pollen microfossils, phytoliths, micro-wear analyses, isotopes, soil micromorphology, genetics, and ethnoarchaeology) which will help to define the emergence and spread of agriculture in the area, its likely place of origin, its main technological attributes as well as the range crop husbandry practices carried out. The interaction between the different approaches and the methodologies involved will allow achieving a greater understanding of the type of agriculture that characterized the first farming communities in the most south-western part of Europe.
Max ERC Funding
1 545 169 €
Duration
Start date: 2009-04-01, End date: 2013-03-31
Project acronym AIR-NB
Project Pre-natal exposure to urban AIR pollution and pre- and post-Natal Brain development
Researcher (PI) Jordi Sunyer
Host Institution (HI) FUNDACION PRIVADA INSTITUTO DE SALUD GLOBAL BARCELONA
Call Details Advanced Grant (AdG), LS7, ERC-2017-ADG
Summary Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Summary
Air pollution is the main urban-related environmental hazard. It appears to affect brain development, although current evidence is inadequate given the lack of studies during the most vulnerable stages of brain development and the lack of brain anatomical structure and regional connectivity data underlying these effects. Of particular interest is the prenatal period, when brain structures are forming and growing, and when the effect of in utero exposure to environmental factors may cause permanent brain injury. I and others have conducted studies focused on effects during school age which could be less profound. I postulate that: pre-natal exposure to urban air pollution during pregnancy impairs foetal and postnatal brain development, mainly by affecting myelination; these effects are at least partially mediated by translocation of airborne particulate matter to the placenta and by placental dysfunction; and prenatal exposure to air pollution impairs post-natal brain development independently of urban context and post-natal exposure to air pollution. I aim to evaluate the effect of pre-natal exposure to urban air pollution on pre- and post-natal brain structure and function by following 900 pregnant women and their neonates with contrasting levels of pre-natal exposure to air pollutants by: i) establishing a new pregnancy cohort and evaluating brain imaging (pre-natal and neo-natal brain structure, connectivity and function), and post-natal motor and cognitive development; ii) measuring total personal exposure and inhaled dose of air pollutants during specific time-windows of gestation, noise, paternal stress and other stressors, using personal samplers and sensors; iii) detecting nanoparticles in placenta and its vascular function; iv) modelling mathematical causality and mediation, including a replication study in an external cohort. The expected results will create an impulse to implement policy interventions that genuinely protect the health of urban citizens.
Max ERC Funding
2 499 992 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym AMORE
Project A distributional MOdel of Reference to Entities
Researcher (PI) Gemma BOLEDA TORRENT
Host Institution (HI) UNIVERSIDAD POMPEU FABRA
Call Details Starting Grant (StG), SH4, ERC-2016-STG
Summary "When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Summary
"When I asked my seven-year-old daughter ""Who is the boy in your class who was also new in school last year, like you?"", she instantly replied ""Daniel"", using the descriptive content in my utterance to identify an entity in the real world and refer to it. The ability to use language to refer to reality is crucial for humans, and yet it is very difficult to model. AMORE breaks new ground in Computational Linguistics, Linguistics, and Artificial Intelligence by developing a model of linguistic reference to entities implemented as a computational system that can learn its own representations from data.
This interdisciplinary project builds on two complementary semantic traditions: 1) Formal semantics, a symbolic approach that can delimit and track linguistic referents, but does not adequately match them with the descriptive content of linguistic expressions; 2) Distributional semantics, which can handle descriptive content but does not associate it to individuated referents. AMORE synthesizes the two approaches into a unified, scalable model of reference that operates with individuated referents and links them to referential expressions characterized by rich descriptive content. The model is a distributed (neural network) version of a formal semantic framework that is furthermore able to integrate perceptual (visual) and linguistic information about entities. We test it extensively in referential tasks that require matching noun phrases (“the Medicine student”, “the white cat”) with entity representations extracted from text and images.
AMORE advances our scientific understanding of language and its computational modeling, and contributes to the far-reaching debate between symbolic and distributed approaches to cognition with an integrative proposal. I am in a privileged position to carry out this integration, since I have contributed top research in both distributional and formal semantics.
"
Max ERC Funding
1 499 805 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym APACHE
Project Atmospheric Pressure plAsma meets biomaterials for bone Cancer HEaling
Researcher (PI) Cristina CANAL BARNILS
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Summary
Cold atmospheric pressure plasmas (APP) have been reported to selectively kill cancer cells without damaging the surrounding tissues. Studies have been conducted on a variety of cancer types but to the best of our knowledge not on any kind of bone cancer. Treatment options for bone cancer include surgery, chemotherapy, etc. and may involve the use of bone grafting biomaterials to replace the surgically removed bone.
APACHE brings a totally different and ground-breaking approach in the design of a novel therapy for bone cancer by taking advantage of the active species generated by APP in combination with biomaterials to deliver the active species locally in the diseased site. The feasibility of this approach is rooted in the evidence that the cellular effects of APP appear to strongly involve the suite of reactive species created by plasmas, which can be derived from a) direct treatment of the malignant cells by APP or b) indirect treatment of the liquid media by APP which is then put in contact with the cancer cells.
In APACHE we aim to investigate the fundamentals involved in the lethal effects of cold plasmas on bone cancer cells, and to develop improved bone cancer therapies. To achieve this we will take advantage of the highly reactive species generated by APP in the liquid media, which we will use in an incremental strategy: i) to investigate the effects of APP treated liquid on bone cancer cells, ii) to evaluate the potential of combining APP treated liquid in a hydrogel vehicle with/wo CaP biomaterials and iii) to ascertain the potential three directional interactions between APP reactive species in liquid medium with biomaterials and with chemotherapeutic drugs.
The methodological approach will involve an interdisciplinary team, dealing with plasma diagnostics in gas and liquid media; with cell biology and the effects of APP treated with bone tumor cells and its combination with biomaterials and/or with anticancer drugs.
Max ERC Funding
1 499 887 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym ARMOS
Project Advanced multifunctional Reactors for green Mobility and Solar fuels
Researcher (PI) Athanasios Konstandopoulos
Host Institution (HI) ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS
Call Details Advanced Grant (AdG), PE8, ERC-2010-AdG_20100224
Summary Green Mobility requires an integrated approach to the chain fuel/engine/emissions. The present project aims at ground breaking advances in the area of Green Mobility by (a) enabling the production of affordable, carbon-neutral, clean, solar fuels using exclusively renewable/recyclable raw materials, namely solar energy, water and captured Carbon Dioxide from combustion power plants (b) developing a highly compact, multifunctional reactor, able to eliminate gaseous and particulate emissions from the exhaust of engines operated on such clean fuels.
The overall research approach will be based on material science, engineering and simulation technology developed by the PI over the past 20 years in the area of Diesel Emission Control Reactors, which will be further extended and cross-fertilized in the area of Solar Thermochemical Reactors, an emerging discipline of high importance for sustainable development, where the PI’s research group has already made significant contributions, and received the 2006 European Commission’s Descartes Prize for the development of the first ever solar reactor, holding the potential to produce on a large scale, pure renewable Hydrogen from the thermochemical splitting of water, also known as the HYDROSOL technology.
Summary
Green Mobility requires an integrated approach to the chain fuel/engine/emissions. The present project aims at ground breaking advances in the area of Green Mobility by (a) enabling the production of affordable, carbon-neutral, clean, solar fuels using exclusively renewable/recyclable raw materials, namely solar energy, water and captured Carbon Dioxide from combustion power plants (b) developing a highly compact, multifunctional reactor, able to eliminate gaseous and particulate emissions from the exhaust of engines operated on such clean fuels.
The overall research approach will be based on material science, engineering and simulation technology developed by the PI over the past 20 years in the area of Diesel Emission Control Reactors, which will be further extended and cross-fertilized in the area of Solar Thermochemical Reactors, an emerging discipline of high importance for sustainable development, where the PI’s research group has already made significant contributions, and received the 2006 European Commission’s Descartes Prize for the development of the first ever solar reactor, holding the potential to produce on a large scale, pure renewable Hydrogen from the thermochemical splitting of water, also known as the HYDROSOL technology.
Max ERC Funding
1 750 000 €
Duration
Start date: 2011-02-01, End date: 2017-01-31