Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomáš Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 2D-CHEM
Project Two-Dimensional Chemistry towards New Graphene Derivatives
Researcher (PI) Michal Otyepka
Host Institution (HI) UNIVERZITA PALACKEHO V OLOMOUCI
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Summary
The suite of graphene’s unique properties and applications can be enormously enhanced by its functionalization. As non-covalently functionalized graphenes do not target all graphene’s properties and may suffer from limited stability, covalent functionalization represents a promising way for controlling graphene’s properties. To date, only a few well-defined graphene derivatives have been introduced. Among them, fluorographene (FG) stands out as a prominent member because of its easy synthesis and high stability. Being a perfluorinated hydrocarbon, FG was believed to be as unreactive as the two-dimensional counterpart perfluoropolyethylene (Teflon®). However, our recent experiments showed that FG is not chemically inert and can be used as a viable precursor for synthesizing graphene derivatives. This surprising behavior indicates that common textbook grade knowledge cannot blindly be applied to the chemistry of 2D materials. Further, there might be specific rules behind the chemistry of 2D materials, forming a new chemical discipline we tentatively call 2D chemistry. The main aim of the project is to explore, identify and apply the rules of 2D chemistry starting from FG. Using the knowledge gained of 2D chemistry, we will attempt to control the chemistry of various 2D materials aimed at preparing stable graphene derivatives with designed properties, e.g., 1-3 eV band gap, fluorescent properties, sustainable magnetic ordering and dispersability in polar media. The new graphene derivatives will be applied in sensing, imaging, magnetic delivery and catalysis and new emerging applications arising from the synergistic phenomena are expected. We envisage that new applications will be opened up that benefit from the 2D scaffold and tailored properties of the synthesized derivatives. The derivatives will be used for the synthesis of 3D hybrid materials by covalent linking of the 2D sheets joined with other organic and inorganic molecules, nanomaterials or biomacromolecules.
Max ERC Funding
1 831 103 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym 2D-PnictoChem
Project Chemistry and Interface Control of Novel 2D-Pnictogen Nanomaterials
Researcher (PI) Gonzalo ABELLAN SAEZ
Host Institution (HI) UNIVERSITAT DE VALENCIA
Call Details Starting Grant (StG), PE5, ERC-2018-STG
Summary 2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Summary
2D-PnictoChem aims at exploring the Chemistry of a novel class of graphene-like 2D layered
elemental materials of group 15, the pnictogens: P, As, Sb, and Bi. In the last few years, these materials
have taken the field of Materials Science by storm since they can outperform and/or complement graphene
properties. Their strongly layer-dependent unique properties range from semiconducting to metallic,
including high carrier mobilities, tunable bandgaps, strong spin-orbit coupling or transparency. However,
the Chemistry of pnictogens is still in its infancy, remaining largely unexplored. This is the niche that
2D-PnictoChem aims to fill. By mastering the interface chemistry, we will develop the assembly of 2Dpnictogens
in complex hybrid heterostructures for the first time. Success will rely on a cross-disciplinary
approach combining both Inorganic- and Organic Chemistry with Solid-state Physics, including: 1)
Synthetizing and exfoliating high quality ultra-thin layer pnictogens, providing reliable access down to
the monolayer limit. 2) Achieving their chemical functionalization via both non-covalent and covalent
approaches in order to tailor at will their properties, decipher reactivity patterns and enable controlled
doping avenues. 3) Developing hybrid architectures through a precise chemical control of the interface,
in order to promote unprecedented access to novel heterostructures. 4) Exploring novel applications
concepts achieving outstanding performances. These are all priorities in the European Union agenda
aimed at securing an affordable, clean energy future by developing more efficient hybrid systems for
batteries, electronic devices or applications in catalysis. The opportunity is unique to reduce Europe’s
dependence on external technology and the PI’s background is ideally suited to tackle these objectives,
counting as well on a multidisciplinary team of international collaborators.
Max ERC Funding
1 499 419 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym 2DNANOPTICA
Project Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics
Researcher (PI) Pablo Alonso-González
Host Institution (HI) UNIVERSIDAD DE OVIEDO
Call Details Starting Grant (StG), PE3, ERC-2016-STG
Summary Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Summary
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.
Max ERC Funding
1 459 219 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym 2DTHERMS
Project Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Researcher (PI) Jose Francisco Rivadulla Fernandez
Host Institution (HI) UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
Call Details Starting Grant (StG), PE3, ERC-2010-StG_20091028
Summary Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Summary
Design of new thermoelectric devices based on layered and field modulated nanostructures of strongly correlated electron systems
Max ERC Funding
1 427 190 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym 4DBIOSERS
Project Four-Dimensional Monitoring of Tumour Growth by Surface Enhanced Raman Scattering
Researcher (PI) Luis LIZ-MARZAN
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOMATERIALES- CIC biomaGUNE
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Summary
Optical bioimaging is limited by visible light penetration depth and stability of fluorescent dyes over extended periods of time. Surface enhanced Raman scattering (SERS) offers the possibility to overcome these drawbacks, through SERS-encoded nanoparticle tags, which can be excited with near-IR light (within the biological transparency window), providing high intensity, stable, multiplexed signals. SERS can also be used to monitor relevant bioanalytes within cells and tissues, during the development of diseases, such as tumours. In 4DBIOSERS we shall combine both capabilities of SERS, to go well beyond the current state of the art, by building three-dimensional scaffolds that support tissue (tumour) growth within a controlled environment, so that not only the fate of each (SERS-labelled) cell within the tumour can be monitored in real time (thus adding a fourth dimension to SERS bioimaging), but also recording the release of tumour metabolites and other indicators of cellular activity. Although 4DBIOSERS can be applied to a variety of diseases, we shall focus on cancer, melanoma and breast cancer in particular, as these are readily accessible by optical methods. We aim at acquiring a better understanding of tumour growth and dynamics, while avoiding animal experimentation. 3D printing will be used to generate hybrid scaffolds where tumour and healthy cells will be co-incubated to simulate a more realistic environment, thus going well beyond the potential of 2D cell cultures. Each cell type will be encoded with ultra-bright SERS tags, so that real-time monitoring can be achieved by confocal SERS microscopy. Tumour development will be correlated with simultaneous detection of various cancer biomarkers, during standard conditions and upon addition of selected drugs. The scope of 4DBIOSERS is multidisciplinary, as it involves the design of high-end nanocomposites, development of 3D cell culture models and optimization of emerging SERS tomography methods.
Max ERC Funding
2 410 771 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ADJUV-ANT VACCINES
Project Elucidating the Molecular Mechanisms of Synthetic Saponin Adjuvants and Development of Novel Self-Adjuvanting Vaccines
Researcher (PI) Alberto FERNANDEZ TEJADA
Host Institution (HI) ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Summary
The clinical success of anticancer and antiviral vaccines often requires the use of an adjuvant, a substance that helps stimulate the body’s immune response to the vaccine, making it work better. However, few adjuvants are sufficiently potent and non-toxic for clinical use; moreover, it is not really known how they work. Current vaccine approaches based on weak carbohydrate and glycopeptide antigens are not being particularly effective to induce the human immune system to mount an effective fight against cancer. Despite intensive research and several clinical trials, no such carbohydrate-based antitumor vaccine has yet been approved for public use. In this context, the proposed project has a double, ultimate goal based on applying chemistry to address the above clear gaps in the adjuvant-vaccine field. First, I will develop new improved adjuvants and novel chemical strategies towards more effective, self-adjuvanting synthetic vaccines. Second, I will probe deeply into the molecular mechanisms of the synthetic constructs by combining extensive immunological evaluations with molecular target identification and detailed conformational studies. Thus, the singularity of this multidisciplinary proposal stems from the integration of its main objectives and approaches connecting chemical synthesis and chemical/structural biology with cellular and molecular immunology. This ground-breaking project at the chemistry-biology frontier will allow me to establish my own independent research group and explore key unresolved mechanistic questions in the adjuvant/vaccine arena with extraordinary chemical precision. Therefore, with this transformative and timely research program I aim to (a) develop novel synthetic antitumor and antiviral vaccines with improved properties and efficacy for their prospective translation into the clinic and (b) gain new critical insights into the molecular basis and three-dimensional structure underlying the biological activity of these constructs.
Max ERC Funding
1 499 219 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ANYONIC
Project Statistics of Exotic Fractional Hall States
Researcher (PI) Mordehai HEIBLUM
Host Institution (HI) WEIZMANN INSTITUTE OF SCIENCE
Call Details Advanced Grant (AdG), PE3, ERC-2018-ADG
Summary Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Summary
Since their discovery, Quantum Hall Effects have unfolded intriguing avenues of research, exhibiting a multitude of unexpected exotic states: accurate quantized conductance states; particle-like and hole-conjugate fractional states; counter-propagating charge and neutral edge modes; and fractionally charged quasiparticles - abelian and (predicted) non-abelian. Since the sought-after anyonic statistics of fractional states is yet to be verified, I propose to launch a thorough search for it employing new means. I believe that our studies will serve the expanding field of the emerging family of topological materials.
Our on-going attempts to observe quasiparticles (qp’s) interference, in order to uncover their exchange statistics (under ERC), taught us that spontaneous, non-topological, ‘neutral edge modes’ are the main culprit responsible for qp’s dephasing. In an effort to quench the neutral modes, we plan to develop a new class of micro-size interferometers, based on synthetically engineered fractional modes. Flowing away from the fixed physical edge, their local environment can be controlled, making it less hospitable for the neutral modes.
Having at hand our synthetized helical-type fractional modes, it is highly tempting to employ them to form localize para-fermions, which will extend the family of exotic states. This can be done by proximitizing them to a superconductor, or gapping them via inter-mode coupling.
The less familiar thermal conductance measurements, which we recently developed (under ERC), will be applied throughout our work to identify ‘topological orders’ of exotic states; namely, distinguishing between abelian and non-abelian fractional states.
The proposal is based on an intensive and continuous MBE effort, aimed at developing extremely high purity, GaAs based, structures. Among them, structures that support our new synthetic modes that are amenable to manipulation, and others that host rare exotic states, such as v=5/2, 12/5, 19/8, and 35/16.
Max ERC Funding
1 801 094 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BIDECASEOX
Project Bio-inspired Design of Catalysts for Selective Oxidations of C-H and C=C Bonds
Researcher (PI) Miguel Costas Salgueiro
Host Institution (HI) UNIVERSITAT DE GIRONA
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Summary
The selective functionalization of C-H and C=C bonds remains a formidable unsolved problem, owing to their inert nature. Novel alkane and alkene oxidation reactions exhibiting good and/or unprecedented selectivities will have a big impact on bulk and fine chemistry by opening novel methodologies that will allow removal of protection-deprotection sequences, thus streamlining synthetic strategies. These goals are targeted in this project via design of iron and manganese catalysts inspired by structural elements of the active site of non-heme enzymes of the Rieske Dioxygenase family. Selectivity is pursued via rational design of catalysts that will exploit substrate recognition-exclusion phenomena, and control over proton and electron affinity of the active species. Moreover, these catalysts will employ H2O2 as oxidant, and will operate under mild conditions (pressure and temperature). The fundamental mechanistic aspects of the catalytic reactions, and the species implicated in C-H and C=C oxidation events will also be studied with the aim of building on the necessary knowledge to design future generations of catalysts, and provide models to understand the chemistry taking place in non-heme iron and manganese-dependent oxygenases.
Max ERC Funding
1 299 998 €
Duration
Start date: 2009-11-01, End date: 2015-10-31
Project acronym BioInspired_SolarH2
Project Engineering Bio-Inspired Systems for the Conversion of Solar Energy to Hydrogen
Researcher (PI) Elisabet ROMERO MESA
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Summary
With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31