Project acronym 3D2DPrint
Project 3D Printing of Novel 2D Nanomaterials: Adding Advanced 2D Functionalities to Revolutionary Tailored 3D Manufacturing
Researcher (PI) Valeria Nicolosi
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE8, ERC-2015-CoG
Summary My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Summary
My vision is to establish, within the framework of an ERC CoG, a multidisciplinary group which will work in concert towards pioneering the integration of novel 2-Dimensional nanomaterials with novel additive fabrication techniques to develop a unique class of energy storage devices.
Batteries and supercapacitors are two very complementary types of energy storage devices. Batteries store much higher energy densities; supercapacitors, on the other hand, hold one tenth of the electricity per unit of volume or weight as compared to batteries but can achieve much higher power densities. Technology is currently striving to improve the power density of batteries and the energy density of supercapacitors. To do so it is imperative to develop new materials, chemistries and manufacturing strategies.
3D2DPrint aims to develop micro-energy devices (both supercapacitors and batteries), technologies particularly relevant in the context of the emergent industry of micro-electro-mechanical systems and constantly downsized electronics. We plan to use novel two-dimensional (2D) nanomaterials obtained by liquid-phase exfoliation. This method offers a new, economic and easy way to prepare ink of a variety of 2D systems, allowing to produce wide device performance window through elegant and simple constituent control at the point of fabrication. 3D2DPrint will use our expertise and know-how to allow development of advanced AM methods to integrate dissimilar nanomaterial blends and/or “hybrids” into fully embedded 3D printed energy storage devices, with the ultimate objective to realise a range of products that contain the above described nanomaterials subcomponent devices, electrical connections and traditional micro-fabricated subcomponents (if needed) ideally using a single tool.
Max ERC Funding
2 499 942 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym A-DIET
Project Metabolomics based biomarkers of dietary intake- new tools for nutrition research
Researcher (PI) Lorraine Brennan
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Consolidator Grant (CoG), LS7, ERC-2014-CoG
Summary In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Summary
In todays advanced technological world, we can track the exact movement of individuals, analyse their genetic makeup and predict predisposition to certain diseases. However, we are unable to accurately assess an individual’s dietary intake. This is without a doubt one of the main stumbling blocks in assessing the link between diet and disease/health. The present proposal (A-DIET) will address this issue with the overarching objective to develop novel strategies for assessment of dietary intake.
Using approaches to (1) identify biomarkers of specific foods (2) classify people into dietary patterns (nutritypes) and (3) develop a tool for integration of dietary and biomarker data, A-DIET has the potential to dramatically enhance our ability to accurately assess dietary intake. The ultimate output from A-DIET will be a dietary assessment tool which can be used to obtain an accurate assessment of dietary intake by combining dietary and biomarker data which in turn will allow investigations into relationships between diet, health and disease. New biomarkers of specific foods will be identified and validated using intervention studies and metabolomic analyses. Methods will be developed to classify individuals into dietary patterns based on biomarker/metabolomic profiles thus demonstrating the novel concept of nutritypes. Strategies for integration of dietary and biomarker data will be developed and translated into a tool that will be made available to the wider scientific community.
Advances made in A-DIET will enable nutrition epidemiologist’s to properly examine the relationship between diet and disease and develop clear public health messages with regard to diet and health. Additionally results from A-DIET will allow researchers to accurately assess people’s diet and implement health promotion strategies and enable dieticians in a clinical environment to assess compliance to therapeutic diets such as adherence to a high fibre diet or a gluten free diet.
Max ERC Funding
1 995 548 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym Active-DNA
Project Computationally Active DNA Nanostructures
Researcher (PI) Damien WOODS
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), PE6, ERC-2017-COG
Summary During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Summary
During the 20th century computer technology evolved from bulky, slow, special purpose mechanical engines to the now ubiquitous silicon chips and software that are one of the pinnacles of human ingenuity. The goal of the field of molecular programming is to take the next leap and build a new generation of matter-based computers using DNA, RNA and proteins. This will be accomplished by computer scientists, physicists and chemists designing molecules to execute ``wet'' nanoscale programs in test tubes. The workflow includes proposing theoretical models, mathematically proving their computational properties, physical modelling and implementation in the wet-lab.
The past decade has seen remarkable progress at building static 2D and 3D DNA nanostructures. However, unlike biological macromolecules and complexes that are built via specified self-assembly pathways, that execute robotic-like movements, and that undergo evolution, the activity of human-engineered nanostructures is severely limited. We will need sophisticated algorithmic ideas to build structures that rival active living systems. Active-DNA, aims to address this challenge by achieving a number of objectives on computation, DNA-based self-assembly and molecular robotics. Active-DNA research work will range from defining models and proving theorems that characterise the computational and expressive capabilities of such active programmable materials to experimental work implementing active DNA nanostructures in the wet-lab.
Max ERC Funding
2 349 603 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym AEROSOL
Project Astrochemistry of old stars:direct probing of unique chemical laboratories
Researcher (PI) Leen Katrien Els Decin
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Summary
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Max ERC Funding
2 605 897 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym ART
Project Aberrant RNA degradation in T-cell leukemia
Researcher (PI) Jan Cools
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS4, ERC-2013-CoG
Summary "The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Summary
"The deregulation of transcription is an important driver of leukemia development. Typically, transcription in leukemia cells is altered by the ectopic expression of transcription factors, by modulation of signaling pathways or by epigenetic changes. In addition to these factors that affect the production of RNAs, also changes in the processing of RNA (its splicing, transport and decay) may contribute to determine steady-state RNA levels in leukemia cells. Indeed, acquired mutations in various genes encoding RNA splice factors have recently been identified in myeloid leukemias and in chronic lymphocytic leukemia. In our study of T-cell acute lymphoblastic leukemia (T-ALL), we have identified mutations in RNA decay factors, including mutations in CNOT3, a protein believed to function in deadenylation of mRNA. It remains, however, unclear how mutations in RNA processing can contribute to the development of leukemia.
In this project, we aim to further characterize the mechanisms of RNA regulation in T-cell acute lymphoblastic leukemia (T-ALL) to obtain insight in the interplay between RNA generation and RNA decay and its role in leukemia development. We will study RNA decay in human T-ALL cells and mouse models of T-ALL, with the aim to identify the molecular consequences that contribute to leukemia development. We will use new technologies such as RNA-sequencing in combination with bromouridine labeling of RNA to measure RNA transcription and decay rates in a transcriptome wide manner allowing unbiased discoveries. These studies will be complemented with screens in Drosophila melanogaster using an established eye cancer model, previously also successfully used for the studies of T-ALL oncogenes.
This study will contribute to our understanding of the pathogenesis of T-ALL and may identify new targets for therapy of this leukemia. In addition, our study will provide a better understanding of how RNA processing is implicated in cancer development in general."
Max ERC Funding
1 998 300 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ASTROFLOW
Project The influence of stellar outflows on exoplanetary mass loss
Researcher (PI) Aline VIDOTTO
Host Institution (HI) THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Call Details Consolidator Grant (CoG), PE9, ERC-2018-COG
Summary ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Summary
ASTROFLOW aims to make ground-breaking progress in our physical understanding of exoplanetary mass loss, by quantifying the influence of stellar outflows on atmospheric escape of close-in exoplanets. Escape plays a key role in planetary evolution, population, and potential to develop life. Stellar irradiation and outflows affect planetary mass loss: irradiation heats planetary atmospheres, which inflate and more likely escape; outflows cause pressure confinement around otherwise freely escaping atmospheres. This external pressure can increase, reduce or even suppress escape rates; its effects on exoplanetary mass loss remain largely unexplored due to the complexity of such interactions. I will fill this knowledge gap by developing a novel modelling framework of atmospheric escape that will, for the first time, consider the effects of realistic stellar outflows on exoplanetary mass loss. My expertise in stellar wind theory and 3D magnetohydrodynamic simulations is crucial for producing the next-generation models of planetary escape. My framework will consist of state-of-the-art, time-dependent, 3D simulations of stellar outflows (Method 1), which will be coupled to novel 3D simulations of atmospheric escape (Method 2). My models will account for the major underlying physical processes of mass loss. With this, I will determine the response of planetary mass loss to realistic stellar particle, magnetic and radiation environments and will characterise the physical conditions of the escaping material. I will compute how its extinction varies during transit and compare synthetic line profiles to atmospheric escape observations from, eg, Hubble and our NASA cubesat CUTE. Strong synergy with upcoming observations (JWST, TESS, SPIRou, CARMENES) also exists. Determining the lifetime of planetary atmospheres is essential to understanding populations of exoplanets. ASTROFLOW’s work will be the foundation for future research of how exoplanets evolve under mass-loss processes.
Max ERC Funding
1 999 956 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym BantuFirst
Project The First Bantu Speakers South of the Rainforest: A Cross-Disciplinary Approach to Human Migration, Language Spread, Climate Change and Early Farming in Late Holocene Central Africa
Researcher (PI) Koen André G. BOSTOEN
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary The Bantu Expansion is not only the main linguistic, cultural and demographic process in Late Holocene Africa. It is also one of the most controversial issues in African History that still has political repercussions today. It has sparked debate across the disciplines and far beyond Africanist circles in an attempt to understand how the young Bantu language family (ca. 5000 years) could spread over large parts of Central, Eastern and Southern Africa. This massive dispersal is commonly seen as the result of a single migratory macro-event driven by agriculture, but many questions about the movement and subsistence of ancestral Bantu speakers are still open. They can only be answered through real interdisciplinary collaboration. This project will unite researchers with outstanding expertise in African archaeology, archaeobotany and historical linguistics to form a unique cross-disciplinary team that will shed new light on the first Bantu-speaking village communities south of the rainforest. Fieldwork is planned in parts of the Democratic Republic of Congo, the Republic of Congo and Angola that are terra incognita for archaeologists to determine the timing, location and archaeological signature of the earliest villagers and to establish how they interacted with autochthonous hunter-gatherers. Special attention will be paid to archaeobotanical and palaeoenvironmental data to get an idea of their subsistence, diet and habitat. Historical linguistics will be pushed beyond the boundaries of vocabulary-based phylogenetics and open new pathways in lexical reconstruction, especially regarding subsistence and land use of early Bantu speakers. Through interuniversity collaboration archaeozoological, palaeoenvironmental and genetic data and phylogenetic modelling will be brought into the cross-disciplinary approach to acquire a new holistic view on the interconnections between human migration, language spread, climate change and early farming in Late Holocene Central Africa.
Summary
The Bantu Expansion is not only the main linguistic, cultural and demographic process in Late Holocene Africa. It is also one of the most controversial issues in African History that still has political repercussions today. It has sparked debate across the disciplines and far beyond Africanist circles in an attempt to understand how the young Bantu language family (ca. 5000 years) could spread over large parts of Central, Eastern and Southern Africa. This massive dispersal is commonly seen as the result of a single migratory macro-event driven by agriculture, but many questions about the movement and subsistence of ancestral Bantu speakers are still open. They can only be answered through real interdisciplinary collaboration. This project will unite researchers with outstanding expertise in African archaeology, archaeobotany and historical linguistics to form a unique cross-disciplinary team that will shed new light on the first Bantu-speaking village communities south of the rainforest. Fieldwork is planned in parts of the Democratic Republic of Congo, the Republic of Congo and Angola that are terra incognita for archaeologists to determine the timing, location and archaeological signature of the earliest villagers and to establish how they interacted with autochthonous hunter-gatherers. Special attention will be paid to archaeobotanical and palaeoenvironmental data to get an idea of their subsistence, diet and habitat. Historical linguistics will be pushed beyond the boundaries of vocabulary-based phylogenetics and open new pathways in lexical reconstruction, especially regarding subsistence and land use of early Bantu speakers. Through interuniversity collaboration archaeozoological, palaeoenvironmental and genetic data and phylogenetic modelling will be brought into the cross-disciplinary approach to acquire a new holistic view on the interconnections between human migration, language spread, climate change and early farming in Late Holocene Central Africa.
Max ERC Funding
1 997 500 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BAS-SBBT
Project Bacterial Amyloid Secretion: Structural Biology and Biotechnology.
Researcher (PI) Han Karel Remaut
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary Curli are functional amyloid fibers that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria. Unlike the protein misfolding and aggregation events seen in pathological amyloid diseases such as Alzheimer’s and Parkinson’s disease, curli are the product of a dedicated protein secretion machinery. Curli formation requires a specialised and mechanistically unique transporter in the bacterial outer membrane, as well as two soluble accessory proteins thought to facilitate the safe guidance of the curli subunits across the periplasm and to coordinate their self-assembly at cell surface.
In this interdisciplinary research program we will study the structural and molecular biology of E. coli curli biosynthesis and address the fundamental questions concerning the molecular processes that allow the spatially and temporally controlled transport and deposition of these pro-amyloidogenic polypeptides. We will structurally unravel the secretion machinery, trap and analyse critical secretion intermediates and through in vitro reconstitution, assemble a minimal, self-sufficient peptide transport and fiber assembly system.
The new insights gained will set the stage for targeted interventions in curli -mediated biofilm formation and this research project will develop a new framework to harness the unique properties found in curli structure and biosynthesis for biotechnological applications as in patterned functionalized nanowires and directed, selective peptide carriers.
Summary
Curli are functional amyloid fibers that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria. Unlike the protein misfolding and aggregation events seen in pathological amyloid diseases such as Alzheimer’s and Parkinson’s disease, curli are the product of a dedicated protein secretion machinery. Curli formation requires a specialised and mechanistically unique transporter in the bacterial outer membrane, as well as two soluble accessory proteins thought to facilitate the safe guidance of the curli subunits across the periplasm and to coordinate their self-assembly at cell surface.
In this interdisciplinary research program we will study the structural and molecular biology of E. coli curli biosynthesis and address the fundamental questions concerning the molecular processes that allow the spatially and temporally controlled transport and deposition of these pro-amyloidogenic polypeptides. We will structurally unravel the secretion machinery, trap and analyse critical secretion intermediates and through in vitro reconstitution, assemble a minimal, self-sufficient peptide transport and fiber assembly system.
The new insights gained will set the stage for targeted interventions in curli -mediated biofilm formation and this research project will develop a new framework to harness the unique properties found in curli structure and biosynthesis for biotechnological applications as in patterned functionalized nanowires and directed, selective peptide carriers.
Max ERC Funding
1 989 489 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym BEAL
Project Bioenergetics in microalgae : regulation modes of mitochondrial respiration, photosynthesis, and fermentative pathways, and their interactions in secondary algae
Researcher (PI) Pierre Antoine Georges Cardol
Host Institution (HI) UNIVERSITE DE LIEGE
Call Details Consolidator Grant (CoG), LS8, ERC-2015-CoG
Summary During the course of eukaryote evolution, photosynthesis was propagated from primary eukaryotic algae to non-photosynthetic organisms through multiple secondary endosymbiotic events. Collectively referred to as “secondary algae”, these photosynthetic organisms account for only 1-2% of the total global biomass, but produce a far larger part of the global annual fixation of carbon on Earth.
ATP is the universal chemical energy carrier in living cells. In photosynthetic eukaryotes, it is produced by two major cellular processes: photosynthesis and respiration taking place in chloroplasts and mitochondria, respectively. Both processes support the production of biomass and govern gas (O2 and CO2) exchanges. On the other hand, anaerobic fermentative enzymes have also been identified in several primary and secondary algae. The regulation modes and interactions of respiration, photosynthesis and fermentation are fairly well understood in primary green algae. Conversely, the complex evolutionary history of secondary algae implies a great variety of original regulatory mechanisms that have been barely investigated to date.
Over the last years my laboratory has developed and optimized a range of multidisciplinary approaches that now allow us, within the frame of the BEAL (BioEnergetics in microALgae) project, to (i) characterize and compare the photosynthetic regulation modes by biophysical approaches, (ii) use genetic and biochemical approaches to gain fundamental knowledge on aerobic respiration and anaerobic fermentative pathways, and (iii) investigate and compare interconnections between respiration, photosynthesis, and fermentation in organisms resulting from distinct evolutionary scenarios. On a long term, these developments will be instrumental to unravel bioenergetics constraints on growth in microalgae, a required knowledge to exploit the microalgal diversity in a biotechnological perspective, and to understand the complexity of the marine phytoplankton.
Summary
During the course of eukaryote evolution, photosynthesis was propagated from primary eukaryotic algae to non-photosynthetic organisms through multiple secondary endosymbiotic events. Collectively referred to as “secondary algae”, these photosynthetic organisms account for only 1-2% of the total global biomass, but produce a far larger part of the global annual fixation of carbon on Earth.
ATP is the universal chemical energy carrier in living cells. In photosynthetic eukaryotes, it is produced by two major cellular processes: photosynthesis and respiration taking place in chloroplasts and mitochondria, respectively. Both processes support the production of biomass and govern gas (O2 and CO2) exchanges. On the other hand, anaerobic fermentative enzymes have also been identified in several primary and secondary algae. The regulation modes and interactions of respiration, photosynthesis and fermentation are fairly well understood in primary green algae. Conversely, the complex evolutionary history of secondary algae implies a great variety of original regulatory mechanisms that have been barely investigated to date.
Over the last years my laboratory has developed and optimized a range of multidisciplinary approaches that now allow us, within the frame of the BEAL (BioEnergetics in microALgae) project, to (i) characterize and compare the photosynthetic regulation modes by biophysical approaches, (ii) use genetic and biochemical approaches to gain fundamental knowledge on aerobic respiration and anaerobic fermentative pathways, and (iii) investigate and compare interconnections between respiration, photosynthesis, and fermentation in organisms resulting from distinct evolutionary scenarios. On a long term, these developments will be instrumental to unravel bioenergetics constraints on growth in microalgae, a required knowledge to exploit the microalgal diversity in a biotechnological perspective, and to understand the complexity of the marine phytoplankton.
Max ERC Funding
1 837 625 €
Duration
Start date: 2016-06-01, End date: 2021-05-31
Project acronym BeyondOpposition
Project Opposing Sexual and Gender Rights and Equalities: Transforming Everyday Spaces
Researcher (PI) Katherine Browne
Host Institution (HI) NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Call Details Consolidator Grant (CoG), SH2, ERC-2018-COG
Summary OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Summary
OPPSEXRIGHTS will be the first large-scale, transnational study to consider the effects of recent Sexual and Gender Rights and Equalities (SGRE) on those who oppose them, by exploring opponents’ experiences of the transformation of everyday spaces. It will work beyond contemporary polarisations, creating new possibilities for social transformation. This cutting-edge research engages with the dramatically altered social and political landscapes in the late 20th and early 21st Century created through the development of lesbian, gay, bisexual, and trans, and women’s rights. Recent reactionary politics highlight the pressing need to understand the position of those who experience these new social orders as a loss. The backlash to SGRE has coalesced into various resistances that are tangibly different to the classic vilification of homosexuality, or those that are anti-woman. Some who oppose SGRE have found themselves the subject of public critique; in the workplace, their jobs threatened, while at home, engagements with schools can cause family conflicts. This is particularly visible in the case studies of Ireland, UK and Canada because of SGRE. A largescale transnational systematic database will be created using low risk (media and organisational discourses; participant observation at oppositional events) and higher risk (online data collection and interviews) methods. Experimenting with social transformation, OPPSEXRIGHTS will work to build bridges between ‘enemies’, including families and communities, through innovative discussion and arts-based workshops. This ambitious project has the potential to create tangible solutions that tackle contemporary societal issues, which are founded in polarisations that are seemingly insurmountable.
Max ERC Funding
1 988 652 €
Duration
Start date: 2019-10-01, End date: 2024-09-30