Project acronym 1stProposal
Project An alternative development of analytic number theory and applications
Researcher (PI) ANDREW Granville
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Advanced Grant (AdG), PE1, ERC-2014-ADG
Summary The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Summary
The traditional (Riemann) approach to analytic number theory uses the zeros of zeta functions. This requires the associated multiplicative function, say f(n), to have special enough properties that the associated Dirichlet series may be analytically continued. In this proposal we continue to develop an approach which requires less of the multiplicative function, linking the original question with the mean value of f. Such techniques have been around for a long time but have generally been regarded as “ad hoc”. In this project we aim to show that one can develop a coherent approach to the whole subject, not only reproving all of the old results, but also many new ones that appear inaccessible to traditional methods.
Our first goal is to complete a monograph yielding a reworking of all the classical theory using these new methods and then to push forward in new directions. The most important is to extend these techniques to GL(n) L-functions, which we hope will now be feasible having found the correct framework in which to proceed. Since we rarely know how to analytically continue such L-functions this could be of great benefit to the subject.
We are developing the large sieve so that it can be used for individual moduli, and will determine a strong form of that. Also a new method to give asymptotics for mean values, when they are not too small.
We wish to incorporate techniques of analytic number theory into our theory, for example recent advances on mean values of Dirichlet polynomials. Also the recent breakthroughs on the sieve suggest strong links that need further exploration.
Additive combinatorics yields important results in many areas. There are strong analogies between its results, and those for multiplicative functions, especially in large value spectrum theory, and its applications. We hope to develop these further.
Much of this is joint work with K Soundararajan of Stanford University.
Max ERC Funding
2 011 742 €
Duration
Start date: 2015-08-01, End date: 2020-07-31
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym 3DIMAGE
Project 3D Imaging Across Lengthscales: From Atoms to Grains
Researcher (PI) Paul Anthony Midgley
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE4, ERC-2011-ADG_20110209
Summary "Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Summary
"Understanding structure-property relationships across lengthscales is key to the design of functional and structural materials and devices. Moreover, the complexity of modern devices extends to three dimensions and as such 3D characterization is required across those lengthscales to provide a complete understanding and enable improvement in the material’s physical and chemical behaviour. 3D imaging and analysis from the atomic scale through to granular microstructure is proposed through the development of electron tomography using (S)TEM, and ‘dual beam’ SEM-FIB, techniques offering complementary approaches to 3D imaging across lengthscales stretching over 5 orders of magnitude.
We propose to extend tomography to include novel methods to determine atom positions in 3D with approaches incorporating new reconstruction algorithms, image processing and complementary nano-diffraction techniques. At the nanoscale, true 3D nano-metrology of morphology and composition is a key objective of the project, minimizing reconstruction and visualization artefacts. Mapping strain and optical properties in 3D are ambitious and exciting challenges that will yield new information at the nanoscale. Using the SEM-FIB, 3D ‘mesoscale’ structures will be revealed: morphology, crystallography and composition can be mapped simultaneously, with ~5nm resolution and over volumes too large to tackle by (S)TEM and too small for most x-ray techniques. In parallel, we will apply 3D imaging to a wide variety of key materials including heterogeneous catalysts, aerospace alloys, biomaterials, photovoltaic materials, and novel semiconductors.
We will collaborate with many departments in Cambridge and institutes worldwide. The personnel on the proposal will cover all aspects of the tomography proposed using high-end TEMs, including an aberration-corrected Titan, and a Helios dual beam. Importantly, a postdoc is dedicated to developing new algorithms for reconstruction, image and spectral processing."
Max ERC Funding
2 337 330 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym 4PI-SKY
Project 4 pi sky: Extreme Astrophysics with Revolutionary Radio Telescopes
Researcher (PI) Robert Philip Fender
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Summary
Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Max ERC Funding
2 999 847 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym AAS
Project Approximate algebraic structure and applications
Researcher (PI) Ben Green
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE1, ERC-2011-StG_20101014
Summary This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Summary
This project studies several mathematical topics with a related theme, all of them part of the relatively new discipline known as additive combinatorics.
We look at approximate, or rough, variants of familiar mathematical notions such as group, polynomial or homomorphism. In each case we seek to describe the structure of these approximate objects, and then to give applications of the resulting theorems. This endeavour has already lead to groundbreaking results in the theory of prime numbers, group theory and combinatorial number theory.
Max ERC Funding
1 000 000 €
Duration
Start date: 2011-10-01, End date: 2016-09-30
Project acronym ABLASE
Project Advanced Bioderived and Biocompatible Lasers
Researcher (PI) Malte Christian Gather
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), PE3, ERC-2014-STG
Summary Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Summary
Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Max ERC Funding
1 499 875 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ACCI
Project Atmospheric Chemistry-Climate Interactions
Researcher (PI) John Adrian Pyle
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Summary
Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Max ERC Funding
2 496 926 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym ACCLAIM
Project Aerosols effects on convective clouds and climate
Researcher (PI) Philip Stier
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE10, ERC-2011-StG_20101014
Summary Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Summary
Clouds play a key role in the climate system. Small anthropogenic perturbations of the cloud system potentially have large radiative effects. Aerosols perturb the global radiation budget directly, by scattering and absorption, as well as indirectly, by the modification of cloud properties and occurrence. The applicability of traditional conceptual models of indirect aerosol effects to convective clouds is disputed as cloud dynamics complicates the picture.
Strong evidence for numerous aerosol effects on convection has been established in individual disciplines: through remote sensing and in-situ observations as well as by cloud resolving and global modelling. However, a coherent scientific view of the effects of aerosols on convection has yet to be established.
The primary objective of ACCLAIM is to recast the effects of aerosols on convective clouds as basis for improved global estimates of anthropogenic climate effects. Specific objectives include: i) to unravel the governing principles of aerosol effects on convective clouds; ii) provide quantitative constraints on satellite-retrieved relationships between convective clouds and aerosols; and ultimately iii) to enable global climate models to represent the full range of anthropogenic climate perturbations and quantify the climate response to aerosol effects on convective clouds.
I have developed the research strategy of ACCLAIM to overcome disciplinary barriers in this frontier research area and seek five years of funding to establish an interdisciplinary, physics focused, research group consisting of two PostDocs, two PhD students and myself. ACCLAIM will be centred around global aerosol-convection climate modelling studies, complemented by research constraining aerosol-convection interactions through remote sensing and a process focused research strand, advancing fundamental understanding and global model parameterisations through high resolution aerosol-cloud modelling in synergy with in-situ observations.
Max ERC Funding
1 429 243 €
Duration
Start date: 2011-09-01, End date: 2017-02-28
Project acronym ACCORD
Project Algorithms for Complex Collective Decisions on Structured Domains
Researcher (PI) Edith Elkind
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE6, ERC-2014-STG
Summary Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Summary
Algorithms for Complex Collective Decisions on Structured Domains.
The aim of this proposal is to substantially advance the field of Computational Social Choice, by developing new tools and methodologies that can be used for making complex group decisions in rich and structured environments. We consider settings where each member of a decision-making body has preferences over a finite set of alternatives, and the goal is to synthesise a collective preference over these alternatives, which may take the form of a partial order over the set of alternatives with a predefined structure: examples include selecting a fixed-size set of alternatives, a ranking of the alternatives, a winner and up to two runner-ups, etc. We will formulate desiderata that apply to such preference aggregation procedures, design specific procedures that satisfy as many of these desiderata as possible, and develop efficient algorithms for computing them. As the latter step may be infeasible on general preference domains, we will focus on identifying the least restrictive domains that enable efficient computation, and use real-life preference data to verify whether the associated restrictions are likely to be satisfied in realistic preference aggregation scenarios. Also, we will determine whether our preference aggregation procedures are computationally resistant to malicious behavior. To lower the cognitive burden on the decision-makers, we will extend our procedures to accept partial rankings as inputs. Finally, to further contribute towards bridging the gap between theory and practice of collective decision making, we will provide open-source software implementations of our procedures, and reach out to the potential users to obtain feedback on their practical applicability.
Max ERC Funding
1 395 933 €
Duration
Start date: 2015-07-01, End date: 2020-06-30