Project acronym 0MSPIN
Project Spintronics based on relativistic phenomena in systems with zero magnetic moment
Researcher (PI) Tomáš Jungwirth
Host Institution (HI) FYZIKALNI USTAV AV CR V.V.I
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Summary
The 0MSPIN project consists of an extensive integrated theoretical, experimental and device development programme of research opening a radical new approach to spintronics. Spintronics has the potential to supersede existing storage and memory applications, and to provide alternatives to current CMOS technology. Ferromagnetic matels used in all current spintronics applications may make it impractical to realise the full potential of spintronics. Metals are unsuitable for transistor and information processing applications, for opto-electronics, or for high-density integration. The 0MSPIN project aims to remove the major road-block holding back the development of spintronics in a radical way: removing the ferromagnetic component from key active parts or from the whole of the spintronic devices. This approach is based on exploiting the combination of exchange and spin-orbit coupling phenomena and material systems with zero macroscopic moment. The goal of the 0MSPIN is to provide a new paradigm by which spintronics can enter the realms of conventional semiconductors in both fundamental condensed matter research and in information technologies. In the central part of the proposal, the research towards this goal is embedded within a materials science project whose aim is to introduce into physics and microelectronics an entirely new class of semiconductors. 0MSPIN seeks to exploit three classes of material systems: (1) Antiferromagnetic bi-metallic 3d-5d alloys (e.g. Mn2Au). (2) Antiferromagnetic I-II-V semiconductors (e.g. LiMnAs). (3) Non-magnetic spin-orbit coupled semiconductors with injected spin-polarized currents (e.g. 2D III-V structures). Proof of concept devices operating at high temperatures will be fabricated to show-case new functionalities offered by zero-moment systems for sensing and memory applications, information processing, and opto-electronics technologies.
Max ERC Funding
1 938 000 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym 3D-E
Project 3D Engineered Environments for Regenerative Medicine
Researcher (PI) Ruth Elizabeth Cameron
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE8, ERC-2012-ADG_20120216
Summary "This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Summary
"This proposal develops a unified, underpinning technology to create novel, complex and biomimetic 3D environments for the control of tissue growth. As director of Cambridge Centre for Medical Materials, I have recently been approached by medical colleagues to help to solve important problems in the separate therapeutic areas of breast cancer, cardiac disease and blood disorders. In each case, the solution lies in complex 3D engineered environments for cell culture. These colleagues make it clear that existing 3D scaffolds fail to provide the required complex orientational and spatial anisotropy, and are limited in their ability to impart appropriate biochemical and mechanical cues.
I have a strong track record in this area. A particular success has been the use of a freeze drying technology to make collagen based porous implants for the cartilage-bone interface in the knee, which has now been commercialised. The novelty of this proposal lies in the broadening of the established scientific base of this technology to enable biomacromolecular structures with:
(A) controlled and complex pore orientation to mimic many normal multi-oriented tissue structures
(B) compositional and positional control to match varying local biochemical environments,
(C) the attachment of novel peptides designed to control cell behaviour, and
(D) mechanical control at both a local and macroscopic level to provide mechanical cues for cells.
These will be complemented by the development of
(E) robust characterisation methodologies for the structures created.
These advances will then be employed in each of the medical areas above.
This approach is highly interdisciplinary. Existing working relationships with experts in each medical field will guarantee expertise and licensed facilities in the required biological disciplines. Funds for this proposal would therefore establish a rich hub of mutually beneficial research and opportunities for cross-disciplinary sharing of expertise."
Max ERC Funding
2 486 267 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym 4PI-SKY
Project 4 pi sky: Extreme Astrophysics with Revolutionary Radio Telescopes
Researcher (PI) Robert Philip Fender
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE9, ERC-2010-AdG_20100224
Summary Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Summary
Extreme astrophysical events such as relativistic flows, cataclysmic explosions and black hole accretion are one of the key areas for astrophysics in the 21st century. The extremes of physics experienced in these environments are beyond anything achievable in any laboratory on Earth, and provide a unique glimpse at the laws of physics operating in extraordinary regimes. All of these events are associated with transient radio emission, a tracer both of the acceleration of particles to relativistic energies, and coherent emitting regions with huge effective temperatures. By studying radio bursts from these phenomena we can pinpoint the sources of explosive events, understand the budget of kinetic feedback by explosive events in the ambient medium, and probe the physical state of the universe back to the epoch of reionisation, less than a billion years after the big bang. In seeking to push back the frontiers of extreme astrophysics, I will use a trio of revolutionary new radio telescopes, LOFAR, ASKAP and MeerKAT, pathfinders for the Square Kilometre Array, and all facilities in which I have a major role in the search for transients. I will build an infrastructure which transforms their combined operations for the discovery, classification and reporting of transient astrophysical events, over the whole sky, making them much more than the sum of their parts. This will include development of environments for the coordinated handling of extreme astrophysical events, in real time, via automated systems, as well as novel techniques for the detection of these events in a sea of noise. I will furthermore augment this program by buying in as a major partner to a rapid-response robotic optical telescope, and by cementing my relationship with an orbiting X-ray facility. This multiwavelength dimension will secure the astrophysical interpretation of our observational results and help to revolutionise high-energy astrophysics via a strong scientific exploitation program.
Max ERC Funding
2 999 847 €
Duration
Start date: 2011-07-01, End date: 2017-06-30
Project acronym ACCI
Project Atmospheric Chemistry-Climate Interactions
Researcher (PI) John Adrian Pyle
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE10, ERC-2010-AdG_20100224
Summary Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Summary
Global change involves a large number of complex interactions between various earth system processes. In the atmosphere, one component of the earth system, there are crucial feedbacks between physical, chemical and biological processes. Thus many of the drivers of climate change depend on chemical processes in the atmosphere including, in addition to ozone and water vapour, methane, nitrous oxide, the halocarbons as well as a range of inorganic and organic aerosols. The link between chemistry and climate is two-way and changes in climate can influence atmospheric chemistry processes in a variety of ways.
Previous studies have looked at these interactions in isolation but the time is now right for more comprehensive studies. The crucial contribution that will be made here is in improving our understanding of the processes within this complex system. Process understanding has been the hallmark of my previous work. The earth system scope here will be ambitiously wide but with a similar drive to understand fundamental processes.
The ambitious programme of research is built around four interrelated questions using new state-of-the-art modelling tools: How will the composition of the stratosphere change in the future, given changes in the concentrations of ozone depleting substances and greenhouse gases? How will these changes in the stratosphere affect tropospheric composition and climate? How will the composition of the troposphere change in the future, given changes in the emissions of ozone precursors and greenhouse gases? How will these changes in the troposphere affect the troposphere-stratosphere climate system?
ACCI will break new ground in bringing all of these questions into a single modelling and diagnostic framework, enabling interrelated questions to be answered which should radically improve our overall projections for global change.
Max ERC Funding
2 496 926 €
Duration
Start date: 2011-05-01, End date: 2017-04-30
Project acronym ACMO
Project Systematic dissection of molecular machines and neural circuits coordinating C. elegans aggregation behaviour
Researcher (PI) Mario De Bono
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Summary
Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Max ERC Funding
2 439 996 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym ACOULOMODE
Project Advanced coupling of low order combustor simulations with thermoacoustic modelling and controller design
Researcher (PI) Aimee Morgans
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE8, ERC-2012-StG_20111012
Summary "Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Summary
"Combustion is essential to the world’s energy generation and transport needs, and will remain so for the foreseeable future. Mitigating its impact on the climate and human health, by reducing its associated emissions, is thus a priority. One significant challenge for gas-turbine combustion is combustion instability, which is currently inhibiting reductions in NOx emissions (these damage human health via a deterioration in air quality). Combustion instability is caused by a two-way coupling between unsteady combustion and acoustic waves - the large pressure oscillations that result can cause substantial mechanical damage. Currently, the lack of fast, accurate modelling tools for combustion instability, and the lack of reliable ways of suppressing it are severely hindering reductions in NOx emissions.
This proposal aims to make step improvements in both fast, accurate modelling of combustion instability, and in developing reliable active control strategies for its suppression. It will achieve this by coupling low order combustor models (these are fast, simplified models for simulating combustion instability) with advances in analytical modelling, CFD simulation, reduced order modelling and control theory tools. In particular:
* important advances in accurately incorporating the effect of entropy waves (temperature variations resulting from unsteady combustion) and non-linear flame models will be made;
* new active control strategies for achieving reliable suppression of combustion instability, including from within limit cycle oscillations, will be developed;
* an open-source low order combustor modelling tool will be developed and widely disseminated, opening access to researchers worldwide and improving communications between the fields of thermoacoustics and control theory.
Thus the proposal aims to use analytical and computational methods to contribute to achieving low NOx gas-turbine combustion, without the penalty of damaging combustion instability."
Max ERC Funding
1 489 309 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym ACTINONSRF
Project MAL: an actin-regulated SRF transcriptional coactivator
Researcher (PI) Richard Treisman
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Summary
MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Max ERC Funding
1 889 995 €
Duration
Start date: 2011-10-01, End date: 2017-09-30
Project acronym ACTSELECTCONTEXT
Project Action Selection under Contextual Uncertainty: the Role of Learning and Effective Connectivity in the Human Brain
Researcher (PI) Sven Bestmann
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Summary
In a changing world, one hallmark feature of human behaviour is the ability to learn about the statistics of the environment and use this prior information for action selection. Knowing about a forthcoming event allows for adjusting our actions pre-emptively, which can optimize survival.
This proposal studies how the human brain learns about the uncertainty in the environment, and how this leads to flexible and efficient action selection.
I hypothesise that the accumulation of evidence for future movements through learning reflects a fundamental organisational principle for action control. This explains widely distributed perceptual-, learning-, decision-, and movement-related signals in the human brain. However, little is known about the concerted interplay between brain regions in terms of effective connectivity which is required for flexible behaviour.
My proposal seeks to shed light on this unresolved issue. To this end, I will use i) a multi-disciplinary neuroimaging approach, together with model-based analyses and Bayesian model comparison, adapted to human reaching behaviour as occurring in daily life; and ii) two novel approaches for testing effective connectivity: dynamic causal modelling (DCM) and concurrent transcranial magnetic stimulation-functional magnetic resonance imaging.
My prediction is that action selection relies on effective connectivity changes, which are a function of the prior information that the brain has to learn about.
If true, this will provide novel insight into the human ability to select actions, based on learning about the uncertainty which is inherent in contextual information. This is relevant for understanding action selection during development and ageing, and for pathologies of action such as Parkinson s disease or stroke.
Max ERC Funding
1 341 805 €
Duration
Start date: 2011-06-01, End date: 2016-05-31
Project acronym ADAPT
Project The Adoption of New Technological Arrays in the Production of Broadcast Television
Researcher (PI) John Cyril Paget Ellis
Host Institution (HI) ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
Call Details Advanced Grant (AdG), SH5, ERC-2012-ADG_20120411
Summary "Since 1960, the television industry has undergone successive waves of technological change. Both the methods of programme making and the programmes themselves have changed substantially. The current opening of TV’s vast archives to public and academic use has emphasised the need to explain old programming to new users. Why particular programmes are like they are is not obvious to the contemporary viewer: the prevailing technologies imposed limits and enabled forms that have fallen into disuse. The project will examine the processes of change which gave rise to the particular dominant configurations of technologies for sound and image capture and processing, and some idea of the national and regional variants that existed. It will emphasise the capabilities of the machines in use rather than the process of their invention. The project therefore studies how the technologies of film and tape were implemented; how both broadcasters and individual filmers coped with the conflicting demands of the different machines at their disposal; how new ‘standard ways of doing things’ gradually emerged; and how all of this enabled desired changes in the resultant programmes. The project will produce an overall written account of the principal changes in the technologies in use in broadcast TV since 1960 to the near present. It will offer a theory of technological innovation, and a major case study in the adoption of digital workflow management in production for broadcasting: the so-called ‘tapeless environment’ which is currently being implemented in major organisations. It will offer two historical case studies: a longditudinal study of the evolution of tape-based sound recording and one of the rapid change from 16mm film cutting to digital editing, a process that took less than five years. Reconstructions of the process of working with particular technological arrays will be filmed and will be made available as explanatory material for any online archive of TV material ."
Summary
"Since 1960, the television industry has undergone successive waves of technological change. Both the methods of programme making and the programmes themselves have changed substantially. The current opening of TV’s vast archives to public and academic use has emphasised the need to explain old programming to new users. Why particular programmes are like they are is not obvious to the contemporary viewer: the prevailing technologies imposed limits and enabled forms that have fallen into disuse. The project will examine the processes of change which gave rise to the particular dominant configurations of technologies for sound and image capture and processing, and some idea of the national and regional variants that existed. It will emphasise the capabilities of the machines in use rather than the process of their invention. The project therefore studies how the technologies of film and tape were implemented; how both broadcasters and individual filmers coped with the conflicting demands of the different machines at their disposal; how new ‘standard ways of doing things’ gradually emerged; and how all of this enabled desired changes in the resultant programmes. The project will produce an overall written account of the principal changes in the technologies in use in broadcast TV since 1960 to the near present. It will offer a theory of technological innovation, and a major case study in the adoption of digital workflow management in production for broadcasting: the so-called ‘tapeless environment’ which is currently being implemented in major organisations. It will offer two historical case studies: a longditudinal study of the evolution of tape-based sound recording and one of the rapid change from 16mm film cutting to digital editing, a process that took less than five years. Reconstructions of the process of working with particular technological arrays will be filmed and will be made available as explanatory material for any online archive of TV material ."
Max ERC Funding
1 680 121 €
Duration
Start date: 2013-08-01, End date: 2018-07-31
Project acronym AF and MSOGR
Project Automorphic Forms and Moduli Spaces of Galois Representations
Researcher (PI) Toby Gee
Host Institution (HI) IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Call Details Starting Grant (StG), PE1, ERC-2012-StG_20111012
Summary I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Summary
I propose to establish a research group to develop completely new tools in order to solve three important problems on the relationships between automorphic forms and Galois representations, which lie at the heart of the Langlands program. The first is to prove Serre’s conjecture for real quadratic fields. I will use automorphic induction to transfer the problem to U(4) over the rational numbers, where I will use automorphy lifting theorems and results on the weight part of Serre's conjecture that I established in my earlier work to reduce the problem to proving results in small weight and level. I will prove these base cases via integral p-adic Hodge theory and discriminant bounds.
The second is to develop a geometric theory of moduli spaces of mod p and p-adic Galois representations, and to use it to establish the Breuil–Mézard conjecture in arbitrary dimension, by reinterpreting the conjecture in geometric terms. This will transform the subject by building the first connections between the p-adic Langlands program and the geometric Langlands program, providing an entirely new world of techniques for number theorists. As a consequence of the Breuil-Mézard conjecture, I will be able to deduce far stronger automorphy lifting theorems (in arbitrary dimension) than those currently available.
The third is to completely determine the reduction mod p of certain two-dimensional crystalline representations, and as an application prove a strengthened version of the Gouvêa–Mazur conjecture. I will do this by means of explicit computations with the p-adic local Langlands correspondence for GL_2(Q_p), as well as by improving existing arguments which prove multiplicity one theorems via automorphy lifting theorems. This work will show that the existence of counterexamples to the Gouvêa-Mazur conjecture is due to a purely local phenomenon, and that when this local obstruction vanishes, far stronger conjectures of Buzzard on the slopes of the U_p operator hold.
Max ERC Funding
1 131 339 €
Duration
Start date: 2012-10-01, End date: 2017-09-30