Project acronym 19TH-CENTURY_EUCLID
Project Nineteenth-Century Euclid: Geometry and the Literary Imagination from Wordsworth to Wells
Researcher (PI) Alice Jenkins
Host Institution (HI) UNIVERSITY OF GLASGOW
Call Details Starting Grant (StG), SH4, ERC-2007-StG
Summary This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Summary
This radically interdisciplinary project aims to bring a substantially new field of research – literature and mathematics studies – to prominence as a tool for investigating the culture of nineteenth-century Britain. It will result in three kinds of outcome: a monograph, two interdisciplinary and international colloquia, and a collection of essays. The project focuses on Euclidean geometry as a key element of nineteenth-century literary and scientific culture, showing that it was part of the shared knowledge flowing through elite and popular Romantic and Victorian writing, and figuring notably in the work of very many of the century’s best-known writers. Despite its traditional cultural prestige and educational centrality, geometry has been almost wholly neglected by literary history. This project shows how literature and mathematics studies can draw a new map of nineteenth-century British culture, revitalising our understanding of the Romantic and Victorian imagination through its writing about geometry.
Max ERC Funding
323 118 €
Duration
Start date: 2009-01-01, End date: 2011-10-31
Project acronym 2DQP
Project Two-dimensional quantum photonics
Researcher (PI) Brian David GERARDOT
Host Institution (HI) HERIOT-WATT UNIVERSITY
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Summary
Quantum optics, the study of how discrete packets of light (photons) and matter interact, has led to the development of remarkable new technologies which exploit the bizarre properties of quantum mechanics. These quantum technologies are primed to revolutionize the fields of communication, information processing, and metrology in the coming years. Similar to contemporary technologies, the future quantum machinery will likely consist of a semiconductor platform to create and process the quantum information. However, to date the demanding requirements on a quantum photonic platform have yet to be satisfied with conventional bulk (three-dimensional) semiconductors.
To surmount these well-known obstacles, a new paradigm in quantum photonics is required. Initiated by the recent discovery of single photon emitters in atomically flat (two-dimensional) semiconducting materials, 2DQP aims to be at the nucleus of a new approach by realizing quantum optics with ultra-stable (coherent) quantum states integrated into devices with electronic and photonic functionality. We will characterize, identify, engineer, and coherently manipulate localized quantum states in this two-dimensional quantum photonic platform. A vital component of 2DQP’s vision is to go beyond the fundamental science and achieve the ideal solid-state single photon device yielding perfect extraction - 100% efficiency - of on-demand indistinguishable single photons. Finally, we will exploit this ideal device to implement the critical building block for a photonic quantum computer.
Max ERC Funding
1 999 135 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 3DMOSHBOND
Project Three-Dimensional Mapping Of a Single Hydrogen Bond
Researcher (PI) Adam Marc SWEETMAN
Host Institution (HI) UNIVERSITY OF LEEDS
Call Details Starting Grant (StG), PE3, ERC-2017-STG
Summary All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Summary
All properties of matter are ultimately governed by the forces between single atoms, but our knowledge of interatomic, and intermolecular, potentials is often derived indirectly.
In 3DMOSHBOND, I outline a program of work designed to create a paradigm shift in the direct measurement of complex interatomic potentials via a fundamental reimagining of how atomic resolution imaging, and force measurement, techniques are applied.
To provide a clear proof of principle demonstration of the power of this concept, I propose to map the strength, shape and extent of single hydrogen bonding (H-bonding) interactions in 3D with sub-Angstrom precision. H-bonding is a key component governing intermolecular interactions, particularly for biologically important molecules. Despite its critical importance, H-bonding is relatively poorly understood, and the IUPAC definition of the H-bond was changed as recently as 2011- highlighting the relevance of a new means to engage with these fundamental interactions.
Hitherto unprecedented resolution and accuracy will be achieved via a creation of a novel layer of vertically oriented H-bonding molecules, functionalisation of the tip of a scanning probe microscope with a single complementary H-bonding molecule, and by complete characterisation of the position of all atoms in the junction. This will place two H-bonding groups “end on” and map the extent, and magnitude, of the H-bond with sub-Angstrom precision for a variety of systems. This investigation of the H-bond will present us with an unparalleled level of information regarding its properties.
Experimental results will be compared with ab initio density functional theory (DFT) simulations, to investigate the extent to which state-of-the-art simulations are able to reproduce the behaviour of the H-bonding interaction. The project will create a new generalised probe for the study of single atomic and molecular interactions.
Max ERC Funding
1 971 468 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym 3SPIN
Project Three Dimensional Spintronics
Researcher (PI) Russell Paul Cowburn
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Summary
Spintronics, in which both the spin and the charge of the electron are used, is one of the most exciting new disciplines to emerge from nanoscience. The 3SPIN project seeks to open a new research front within spintronics: namely 3-dimensional spintronics, in which magnetic nanostructures are formed into a 3-dimensional interacting network of unrivalled density and hence technological benefit. 3SPIN will explore early-stage science that could underpin 3-dimensional metallic spintronics. The thesis of the project is: that by careful control of the constituent nanostructure properties, a 3-dimensional medium can be created in which a large number of topological solitons can exist. Although hardly studied at all to date, these solitons should be stable at room temperature, extremely compact and easy to manipulate and propagate. This makes them potentially ideal candidates to form the basis of a new spintronics in which the soliton is the basic transport vector instead of electrical current. ¬3.5M of funding is requested to form a new team of 5 researchers who, over a period of 60 months, will perform computer simulations and experimental studies of solitons in 3-dimensional networks of magnetic nanostructures and develop a laboratory demonstrator 3-dimensional memory device using solitons to represent and store data. A high performance electron beam lithography system (cost 1M¬) will be purchased to allow state-of-the-art magnetic nanostructures to be fabricated with perfect control over their magnetic properties, thus allowing the ideal conditions for solitons to be created and controllably manipulated. Outputs from the project will be a complete understanding of the properties of these new objects and a road map charting the next steps for research in the field.
Max ERC Funding
2 799 996 €
Duration
Start date: 2010-03-01, End date: 2016-02-29
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ABLASE
Project Advanced Bioderived and Biocompatible Lasers
Researcher (PI) Malte Christian Gather
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Starting Grant (StG), PE3, ERC-2014-STG
Summary Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Summary
Naturally occurring optical phenomena attract great attention and transform our ability to study biological processes, with “the discovery and development of the green fluorescent protein (GFP)” (Nobel Prize in Chemistry 2008) being a particularly successful example. Although found only in very few species in nature, most organisms can be genetically programmed to produce the brightly fluorescent GFP molecules. Combined with modern fluorescence detection schemes, this has led to entirely new ways of monitoring biological processes. The applicant now demonstrated a biological laser – a completely novel, living source of coherent light based on a single biological cell bioengineered to produce GFP. Such a laser is intrinsically biocompatible, thus offering unique properties not shared by any existing laser. However, the physical processes involved in lasing from GFP remain poorly understood and so far biological lasers rely on bulky, impractical external resonators for optical feedback. Within this project, the applicant and his team will develop for the first time an understanding of stimulated emission in GFP and related proteins and create an unprecedented stand-alone single-cell biolaser based on intracellular optical feedback. These lasers will be deployed as microscopic and biocompatible imaging probes, thus opening in vivo microscopy to dense wavelength-multiplexing and enabling unmatched sensing of biomolecules and mechanical pressure. The evolutionarily evolved nano-structure of GFP will also enable novel ways of studying strong light-matter coupling and will bio-inspire advances of synthetic emitters. The proposed project is inter-disciplinary by its very nature, bridging photonics, genetic engineering and material science. The applicant’s previous pioneering work and synergies with work on other lasers developed at the applicant’s host institution provide an exclusive competitive edge. ERC support would transform this into a truly novel field of research.
Max ERC Funding
1 499 875 €
Duration
Start date: 2015-06-01, End date: 2020-05-31
Project acronym ACHILLES-HEEL
Project Crop resistance improvement by mining natural and induced variation in host accessibility factors
Researcher (PI) Sebastian Schornack
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Summary
Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Max ERC Funding
1 991 054 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym ACQDIV
Project Acquisition processes in maximally diverse languages: Min(d)ing the ambient language
Researcher (PI) Sabine Erika Stoll
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary "Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Summary
"Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Max ERC Funding
1 998 438 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym ActionContraThreat
Project Action selection under threat: the complex control of human defense
Researcher (PI) Dominik BACH
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2018-COG
Summary Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Summary
Run away, sidestep, duck-and-cover, watch: when under threat, humans immediately choreograph a large repertoire of defensive actions. Understanding action-selection under threat is important for anybody wanting to explain why anxiety disorders imply some of these behaviours in harmless situations. Current concepts of human defensive behaviour are largely derived from rodent research and focus on a small number of broad, cross-species, action tendencies. This is likely to underestimate the complexity of the underlying action-selection mechanisms. This research programme will take decisive steps to understand these psychological mechanisms and elucidate their neural implementation.
To elicit threat-related action in the laboratory, I will use virtual reality computer games with full body motion, and track actions with motion-capture technology. Based on a cognitive-computational framework, I will systematically characterise the space of actions under threat, investigate the psychological mechanisms by which actions are selected in different scenarios, and describe them with computational algorithms that allow quantitative predictions. To independently verify their neural implementation, I will use wearable magnetoencephalography (MEG) in freely moving subjects.
This proposal fills a lacuna between defence system concepts based on rodent research, emotion psychology, and clinical accounts of anxiety disorders. By combining a stringent experimental approach with the formalism of cognitive-computational psychology, it furnishes a unique opportunity to understand the mechanisms of action-selection under threat, and how these are distinct from more general-purpose action-selection systems. Beyond its immediate scope, the proposal has a potential to lead to a better understanding of anxiety disorders, and to pave the way towards improved diagnostics and therapies.
Max ERC Funding
1 998 750 €
Duration
Start date: 2019-10-01, End date: 2024-09-30
Project acronym ADREEM
Project Adding Another Dimension – Arrays of 3D Bio-Responsive Materials
Researcher (PI) Mark Bradley
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Summary
This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Max ERC Funding
2 310 884 €
Duration
Start date: 2014-11-01, End date: 2019-10-31