Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym 2SEXES_1GENOME
Project Sex-specific genetic effects on fitness and human disease
Researcher (PI) Edward Hugh Morrow
Host Institution (HI) THE UNIVERSITY OF SUSSEX
Call Details Starting Grant (StG), LS8, ERC-2011-StG_20101109
Summary Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Summary
Darwin’s theory of natural selection rests on the principle that fitness variation in natural populations has a heritable component, on which selection acts, thereby leading to evolutionary change. A fundamental and so far unresolved question for the field of evolutionary biology is to identify the genetic loci responsible for this fitness variation, thereby coming closer to an understanding of how variation is maintained in the face of continual selection. One important complicating factor in the search for fitness related genes however is the existence of separate sexes – theoretical expectations and empirical data both suggest that sexually antagonistic genes are common. The phrase “two sexes, one genome” nicely sums up the problem; selection may favour alleles in one sex, even if they have detrimental effects on the fitness of the opposite sex, since it is their net effect across both sexes that determine the likelihood that alleles persist in a population. This theoretical framework raises an interesting, and so far entirely unexplored issue: that in one sex the functional performance of some alleles is predicted to be compromised and this effect may account for some common human diseases and conditions which show genotype-sex interactions. I propose to explore the genetic basis of sex-specific fitness in a model organism in both laboratory and natural conditions and to test whether those genes identified as having sexually antagonistic effects can help explain the incidence of human diseases that display sexual dimorphism in prevalence, age of onset or severity. This multidisciplinary project directly addresses some fundamental unresolved questions in evolutionary biology: the genetic basis and maintenance of fitness variation; the evolution of sexual dimorphism; and aims to provide novel insights into the genetic basis of some common human diseases.
Max ERC Funding
1 500 000 €
Duration
Start date: 2012-01-01, End date: 2016-12-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ACHILLES-HEEL
Project Crop resistance improvement by mining natural and induced variation in host accessibility factors
Researcher (PI) Sebastian Schornack
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Summary
Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Max ERC Funding
1 991 054 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym ACMO
Project Systematic dissection of molecular machines and neural circuits coordinating C. elegans aggregation behaviour
Researcher (PI) Mario De Bono
Host Institution (HI) MEDICAL RESEARCH COUNCIL
Call Details Advanced Grant (AdG), LS5, ERC-2010-AdG_20100317
Summary Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Summary
Elucidating how neural circuits coordinate behaviour, and how molecules underpin the properties of individual neurons are major goals of neuroscience. Optogenetics and neural imaging combined with the powerful genetics and well-described nervous system of C. elegans offer special opportunities to address these questions. Previously, we identified a series of sensory neurons that modulate aggregation of C. elegans. These include neurons that respond to O2, CO2, noxious cues, satiety state, and pheromones. We propose to take our analysis to the next level by dissecting how, in mechanistic molecular terms, these distributed inputs modify the activity of populations of interneurons and motoneurons to coordinate group formation. Our strategy is to develop new, highly parallel approaches to replace the traditional piecemeal analysis.
We propose to:
1) Harness next generation sequencing (NGS) to forward genetics, rapidly to identify a molecular ¿parts list¿ for aggregation. Much of the genetics has been done: we have identified almost 200 mutations that inhibit or enhance aggregation but otherwise show no overt phenotype. A pilot study of 50 of these mutations suggests they identify dozens of genes not previously implicated in aggregation. NGS will allow us to molecularly identify these genes in a few months, providing multiple entry points to study molecular and circuitry mechanisms for behaviour.
2) Develop new methods to image the activity of populations of neurons in immobilized and freely moving animals, using genetically encoded indicators such as the calcium sensor cameleon and the voltage indicator mermaid.
This will be the first time a complex behaviour has been dissected in this way. We expect to identify novel conserved molecular and circuitry mechanisms.
Max ERC Funding
2 439 996 €
Duration
Start date: 2011-04-01, End date: 2017-03-31
Project acronym ACTINONSRF
Project MAL: an actin-regulated SRF transcriptional coactivator
Researcher (PI) Richard Treisman
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2010-AdG_20100317
Summary MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Summary
MAL: an actin-regulated SRF transcriptional coactivator
Recent years have seen a revitalised interest in the role of actin in nuclear processes, but the molecular mechanisms involved remain largely unexplored. We will elucidate the molecular basis for the actin-based control of the SRF transcriptional coactivator, MAL. SRF controls transcription through two families of coactivators, the actin-binding MRTFs (MAL, Mkl2), which couple its activity to cytoskeletal dynamics, and the ERK-regulated TCFs (Elk-1, SAP-1, Net). MAL subcellular localisation and transcriptional activity responds to signal-induced changes in G-actin concentration, which are sensed by its actin-binding N-terminal RPEL domain. Members of a second family of RPEL proteins, the Phactrs, also exhibit actin-regulated nucleocytoplasmic shuttling. The proposal addresses the following novel features of actin biology:
¿ Actin as a transcriptional regulator
¿ Actin as a signalling molecule
¿ Actin-binding proteins as targets for regulation by actin, rather than regulators of actin function
We will analyse the sequences and proteins involved in actin-regulated nucleocytoplasmic shuttling, using structural biology and biochemistry to analyse its control by changes in actin-RPEL domain interactions. We will characterise the dynamics of shuttling, and develop reporters for changes in actin-MAL interaction for analysis of pathway activation in vivo. We will identify genes controlling MAL itself, and the balance between the nuclear and cytoplasmic actin pools. The mechanism by which actin represses transcriptional activation by MAL in the nucleus, and its relation to MAL phosphorylation, will be elucidated. Finally, we will map MRTF and TCF cofactor recruitment to SRF targets on a genome-wide scale, and identify the steps in transcription controlled by actin-MAL interaction.
Max ERC Funding
1 889 995 €
Duration
Start date: 2011-10-01, End date: 2017-09-30
Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym ACTOMYOSIN RING
Project Understanding Cytokinetic Actomyosin Ring Assembly Through Genetic Code Expansion, Click Chemistry, DNA origami, and in vitro Reconstitution
Researcher (PI) Mohan Balasubramanian
Host Institution (HI) THE UNIVERSITY OF WARWICK
Call Details Advanced Grant (AdG), LS3, ERC-2014-ADG
Summary The mechanism of cell division is conserved in many eukaryotes, from yeast to man. A contractile ring of filamentous actin and myosin II motors generates the force to bisect a mother cell into two daughters. The actomyosin ring is among the most complex cellular machines, comprising over 150 proteins. Understanding how these proteins organize themselves into a functional ring with appropriate contractile properties remains one of the great challenges in cell biology. Efforts to generate a comprehensive understanding of the mechanism of actomyosin ring assembly have been hampered by the lack of structural information on the arrangement of actin, myosin II, and actin modulators in the ring in its native state. Fundamental questions such as how actin filaments are assembled and organized into a ring remain actively debated. This project will investigate key issues pertaining to cytokinesis in the fission yeast Schizosaccharomyces pombe, which divides employing an actomyosin based contractile ring, using the methods of genetics, biochemistry, cellular imaging, DNA origami, genetic code expansion, and click chemistry. Specifically, we will (1) attempt to visualize actin filament assembly in live cells expressing fluorescent actin generated through synthetic biological approaches, including genetic code expansion and click chemistry (2) decipher actin filament polarity in the actomyosin ring using total internal reflection fluorescence microscopy of labelled dimeric and multimeric myosins V and VI generated through DNA origami approaches (3) address when, where, and how actin filaments for cytokinesis are assembled and organized into a ring and (4) reconstitute actin filament and functional actomyosin ring assembly in permeabilized spheroplasts and in supported bilayers. Success in the project will provide major insight into the mechanism of actomyosin ring assembly and illuminate principles behind cytoskeletal self-organization.
Summary
The mechanism of cell division is conserved in many eukaryotes, from yeast to man. A contractile ring of filamentous actin and myosin II motors generates the force to bisect a mother cell into two daughters. The actomyosin ring is among the most complex cellular machines, comprising over 150 proteins. Understanding how these proteins organize themselves into a functional ring with appropriate contractile properties remains one of the great challenges in cell biology. Efforts to generate a comprehensive understanding of the mechanism of actomyosin ring assembly have been hampered by the lack of structural information on the arrangement of actin, myosin II, and actin modulators in the ring in its native state. Fundamental questions such as how actin filaments are assembled and organized into a ring remain actively debated. This project will investigate key issues pertaining to cytokinesis in the fission yeast Schizosaccharomyces pombe, which divides employing an actomyosin based contractile ring, using the methods of genetics, biochemistry, cellular imaging, DNA origami, genetic code expansion, and click chemistry. Specifically, we will (1) attempt to visualize actin filament assembly in live cells expressing fluorescent actin generated through synthetic biological approaches, including genetic code expansion and click chemistry (2) decipher actin filament polarity in the actomyosin ring using total internal reflection fluorescence microscopy of labelled dimeric and multimeric myosins V and VI generated through DNA origami approaches (3) address when, where, and how actin filaments for cytokinesis are assembled and organized into a ring and (4) reconstitute actin filament and functional actomyosin ring assembly in permeabilized spheroplasts and in supported bilayers. Success in the project will provide major insight into the mechanism of actomyosin ring assembly and illuminate principles behind cytoskeletal self-organization.
Max ERC Funding
2 863 705 €
Duration
Start date: 2015-11-01, End date: 2020-10-31