Project acronym 2DHIBSA
Project Nanoscopic and Hierachical Materials via Living Crystallization-Driven Self-Assembly
Researcher (PI) Ian MANNERS
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Summary
A key synthetic challenge of widespread interest in chemical science involves the creation of well-defined 2D functional materials that exist on a length-scale of nanometers to microns. In this ambitious 5 year proposal we aim to tackle this issue by exploiting the unique opportunities made possible by recent developments with the living crystallization-driven self-assembly (CDSA) platform. Using this solution processing approach, amphiphilic block copolymers (BCPs) with crystallizable blocks, related amphiphiles, and polymers with charged end groups will be used to predictably construct monodisperse samples of tailored, functional soft matter-based 2D nanostructures with controlled shape, size, and spatially-defined chemistries. Many of the resulting nanostructures will also offer unprecedented opportunities as precursors to materials with hierarchical structures through further solution-based “bottom-up” assembly methods. In addition to fundamental studies, the proposed work also aims to make important impact in the cutting-edge fields of liquid crystals, interface stabilization, catalysis, supramolecular polymers, and hierarchical materials.
Max ERC Funding
2 499 597 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ABEL
Project "Alpha-helical Barrels: Exploring, Understanding and Exploiting a New Class of Protein Structure"
Researcher (PI) Derek Neil Woolfson
Host Institution (HI) UNIVERSITY OF BRISTOL
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary "Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Summary
"Recently through de novo peptide design, we have discovered and presented a new protein structure. This is an all-parallel, 6-helix bundle with a continuous central channel of 0.5 – 0.6 nm diameter. We posit that this is one of a broader class of protein structures that we call the alpha-helical barrels. Here, in three Work Packages, we propose to explore these structures and to develop protein functions within them. First, through a combination of computer-aided design, peptide synthesis and thorough biophysical characterization, we will examine the extents and limits of the alpha-helical-barrel structures. Whilst this is curiosity driven research, it also has practical consequences for the studies that will follow; that is, alpha-helical barrels made from increasing numbers of helices have channels or pores that increase in a predictable way. Second, we will use rational and empirical design approaches to engineer a range of functions within these cavities, including binding capabilities and enzyme-like activities. Finally, and taking the programme into another ambitious area, we will use the alpha-helical barrels to template other folds that are otherwise difficult to design and engineer, notably beta-barrels that insert into membranes to render ion-channel and sensor functions."
Max ERC Funding
2 467 844 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ACB
Project The Analytic Conformal Bootstrap
Researcher (PI) Luis Fernando ALDAY
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Advanced Grant (AdG), PE2, ERC-2017-ADG
Summary The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Summary
The aim of the present proposal is to establish a research team developing and exploiting innovative techniques to study conformal field theories (CFT) analytically. Our approach does not rely on a Lagrangian description but on symmetries and consistency conditions. As such it applies to any CFT, offering a unified framework to study generic CFTs analytically. The initial implementation of this program has already led to striking new results and insights for both Lagrangian and non-Lagrangian CFTs.
The overarching aims of my team will be: To develop an analytic bootstrap program for CFTs in general dimensions; to complement these techniques with more traditional methods and develop a systematic machinery to obtain analytic results for generic CFTs; and to use these results to gain new insights into the mathematical structure of the space of quantum field theories.
The proposal will bring together researchers from different areas. The objectives in brief are:
1) Develop an alternative to Feynman diagram computations for Lagrangian CFTs.
2) Develop a machinery to compute loops for QFT on AdS, with and without gravity.
3) Develop an analytic approach to non-perturbative N=4 SYM and other CFTs.
4) Determine the space of all CFTs.
5) Gain new insights into the mathematical structure of the space of quantum field theories.
The outputs of this proposal will include a new way of doing perturbative computations based on symmetries; a constructive derivation of the AdS/CFT duality; new analytic techniques to attack strongly coupled systems and invaluable new lessons about the space of CFTs and QFTs.
Success in this research will lead to a completely new, unified way to view and solve CFTs, with a huge impact on several branches of physics and mathematics.
Max ERC Funding
2 171 483 €
Duration
Start date: 2018-12-01, End date: 2023-11-30
Project acronym ACHILLES-HEEL
Project Crop resistance improvement by mining natural and induced variation in host accessibility factors
Researcher (PI) Sebastian Schornack
Host Institution (HI) THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Call Details Starting Grant (StG), LS9, ERC-2014-STG
Summary Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Summary
Increasing crop yield to feed the world is a grand challenge of the 21st century but it is hampered by diseases caused by filamentous plant pathogens. The arms race between pathogen and plant demands constant adjustment of crop germplasm to tackle emerging pathogen races with new virulence features. To date, most crop disease resistance has relied on specific resistance genes that are effective only against a subset of races. We cannot solely rely on classical resistance genes to keep ahead of the pathogens. There is an urgent need to develop approaches based on knowledge of the pathogen’s Achilles heel: core plant processes that are required for pathogen colonization.
Our hypothesis is that disease resistance based on manipulation of host accessibility processes has a higher probability for durability, and is best identified using a broad host-range pathogen. I will employ the filamentous pathogen Phytophthora palmivora to mine plant alleles and unravel host processes providing microbial access in roots and leaves of monocot and dicot plants.
In Aim 1 I will utilize plant symbiosis mutants and allelic variation to elucidate general mechanisms of colonization by filamentous microbes. Importantly, allelic variation will be studied in economically relevant barley and wheat to allow immediate translation into breeding programs.
In Aim 2 I will perform a comparative study of microbial colonization in monocot and dicot roots and leaves. Transcriptional profiling of pathogen and plant will highlight common and contrasting principles and illustrate the impact of differential plant anatomies.
We will challenge our findings by testing beneficial fungi to assess commonalities and differences between mutualist and pathogen colonization. We will use genetics, cell biology and genomics to find suitable resistance alleles highly relevant to crop production and global food security. At the completion of the project, I expect to have a set of genes for resistance breeding.
Max ERC Funding
1 991 054 €
Duration
Start date: 2015-09-01, End date: 2021-08-31
Project acronym ADOR
Project Assembly-disassembly-organisation-reassembly of microporous materials
Researcher (PI) Russell MORRIS
Host Institution (HI) THE UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
Call Details Advanced Grant (AdG), PE5, ERC-2017-ADG
Summary Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Summary
Microporous materials are an important class of solid; the two main members of this family are zeolites and metal-organic frameworks (MOFs). Zeolites are industrial solids whose applications range from catalysis, through ion exchange and adsorption technologies to medicine. MOFs are some of the most exciting new materials to have been developed over the last two decades, and they are just beginning to be applied commercially.
Over recent years the applicant’s group has developed new synthetic strategies to prepare microporous materials, called the Assembly-Disassembly-Organisation-Reassembly (ADOR) process. In significant preliminary work the ADOR process has shown to be an extremely important new synthetic methodology that differs fundamentally from traditional solvothermal methods.
In this project I will look to overturn the conventional thinking in materials science by developing methodologies that can target both zeolites and MOF materials that are difficult to prepare using traditional methods – the so-called ‘unfeasible’ materials. The importance of such a new methodology is that it will open up routes to materials that have different properties (both chemical and topological) to those we currently have. Since zeolites and MOFs have so many actual and potential uses, the preparation of materials with different properties has a high chance of leading to new technologies in the medium/long term. To complete the major objective I will look to complete four closely linked activities covering the development of design strategies for zeolites and MOFs (activities 1 & 2), mechanistic studies to understand the process at the molecular level using in situ characterisation techniques (activity 3) and an exploration of potential applied science for the prepared materials (activity 4).
Max ERC Funding
2 489 220 €
Duration
Start date: 2018-10-01, End date: 2023-09-30
Project acronym ADREEM
Project Adding Another Dimension – Arrays of 3D Bio-Responsive Materials
Researcher (PI) Mark Bradley
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), LS9, ERC-2013-ADG
Summary This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Summary
This proposal is focused in the areas of chemical medicine and chemical biology with the key drivers being the discovery and development of new materials that have practical functionality and application. The project will enable the fabrication of thousands of three-dimensional “smart-polymers” that will allow: (i). The precise and controlled release of drugs upon the addition of either a small molecule trigger or in response to disease, (ii). The discovery of materials that control and manipulate cells with the identification of scaffolds that provide the necessary biochemical cues for directing cell fate and drive tissue regeneration and (iii). The development of new classes of “smart-polymers” able, in real-time, to sense and report bacterial contamination. The newly discovered materials will find multiple biomedical applications in regenerative medicine and biotechnology ranging from 3D cell culture, bone repair and niche stabilisation to bacterial sensing/removal, while offering a new paradigm in drug delivery with biomarker triggered drug release.
Max ERC Funding
2 310 884 €
Duration
Start date: 2014-11-01, End date: 2019-10-31
Project acronym AFRIGOS
Project African Governance and Space: Transport Corridors, Border Towns and Port Cities in Transition
Researcher (PI) Paul Christopher Nugent
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Advanced Grant (AdG), SH2, ERC-2014-ADG
Summary AFRIGOS investigates the process of 'respacing' Africa, a political drive towards regional and continental integration, on the one hand, and the re-casting of Africa's engagement with the global economy, on the other. This is reflected in unprecedented levels of investment in physical and communications infrastructure, and the outsourcing of key functions of Customs, Immigration and security agencies. AFRIGOS poses the question of how far respacing is genuinely forging institutions that are facilitating or obstructing the movement of people and goods; that are enabling or preventing urban and border spaces from being more effectively and responsively governed; and that take into account the needs of African populations whose livelihoods are rooted in mobility and informality. The principal research questions are approached through a comparative study of port cities, border towns and other strategic nodes situated along the busiest transport corridors in East, Central, West and Southern Africa. These represent sites of remarkable dynamism and cosmopolitanism, which reflects their role in connecting African urban centres to each other and to other global cities.
AFRIGOS considers how governance 'assemblages' are forged at different scales and is explicitly comparative. It works through 5 connected Streams that address specific questions: 1. AGENDA-SETTING is concerned with policy (re-)formulation. 2. PERIPHERAL URBANISM examines governance in border towns and port cities. 3. BORDER WORKERS addresses everyday governance emerging through the interaction of officials and others who make their livelihoods from the border. 4. CONNECTIVE INFRASTRUCTURE looks as the transformative effects of new technologies. 5. PEOPLE & GOODS IN MOTION traces the passage of people and goods and the regimes of regulation to which they are subjected. AFRIGOS contributes to interdisciplinary research on borderland studies, multi-level governance and the everyday state.
Summary
AFRIGOS investigates the process of 'respacing' Africa, a political drive towards regional and continental integration, on the one hand, and the re-casting of Africa's engagement with the global economy, on the other. This is reflected in unprecedented levels of investment in physical and communications infrastructure, and the outsourcing of key functions of Customs, Immigration and security agencies. AFRIGOS poses the question of how far respacing is genuinely forging institutions that are facilitating or obstructing the movement of people and goods; that are enabling or preventing urban and border spaces from being more effectively and responsively governed; and that take into account the needs of African populations whose livelihoods are rooted in mobility and informality. The principal research questions are approached through a comparative study of port cities, border towns and other strategic nodes situated along the busiest transport corridors in East, Central, West and Southern Africa. These represent sites of remarkable dynamism and cosmopolitanism, which reflects their role in connecting African urban centres to each other and to other global cities.
AFRIGOS considers how governance 'assemblages' are forged at different scales and is explicitly comparative. It works through 5 connected Streams that address specific questions: 1. AGENDA-SETTING is concerned with policy (re-)formulation. 2. PERIPHERAL URBANISM examines governance in border towns and port cities. 3. BORDER WORKERS addresses everyday governance emerging through the interaction of officials and others who make their livelihoods from the border. 4. CONNECTIVE INFRASTRUCTURE looks as the transformative effects of new technologies. 5. PEOPLE & GOODS IN MOTION traces the passage of people and goods and the regimes of regulation to which they are subjected. AFRIGOS contributes to interdisciplinary research on borderland studies, multi-level governance and the everyday state.
Max ERC Funding
2 491 364 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AISMA
Project An anthropological investigation of muscular politics in South Asia
Researcher (PI) Lucia Michelutti
Host Institution (HI) UNIVERSITY COLLEGE LONDON
Call Details Starting Grant (StG), SH2, ERC-2011-StG_20101124
Summary Over the past decade, the media, international organisations, as well as policy-making bodies have voiced increasing concern about a growing overlap between the criminal and political spheres in South Asia. Many 'criminal politicians' are accused not simply of embezzlement, but of burglary, kidnapping and murder, so that the observed political landscape emerges not only as a 'corrupt', but also a highly violent sphere. This project is a collaborative and cross-national ethnographic study of the criminalisation of politics in India, Pakistan and Bangladesh. Bringing together local-level investigation, surveys and historical analysis, the project will produce comprehensive political ethnographies in sixteen sites across the subcontinent, providing empirical material and theoretical directives for further charting of the virtually unexplored terrain of extra-legal muscular politics in the region. Central to the proposed programme of research are the following interrelated objectives: 1) To further develop the method of collaborative political ethnography by designing, collecting and producing case studies which will allow us to write thematically across sites; 2) To generate policy relevant research in the fields of security, conflict, democracy and development; 3) To produce capability by forging an international network of scholars on issues related to democratisation, violence, crime and support the work and careers of the project's 4 Post-docs. The study capitalises on previous research and skills of the PI in the cross-cultural study of democracy and muscular politics in the global South. All members of the research team have expertise in ethnographic research in the difficult spheres of criminal politics, informal economies, and political violence and are hence well and sometimes uniquely equipped to pursue this challenging research thematic.
Summary
Over the past decade, the media, international organisations, as well as policy-making bodies have voiced increasing concern about a growing overlap between the criminal and political spheres in South Asia. Many 'criminal politicians' are accused not simply of embezzlement, but of burglary, kidnapping and murder, so that the observed political landscape emerges not only as a 'corrupt', but also a highly violent sphere. This project is a collaborative and cross-national ethnographic study of the criminalisation of politics in India, Pakistan and Bangladesh. Bringing together local-level investigation, surveys and historical analysis, the project will produce comprehensive political ethnographies in sixteen sites across the subcontinent, providing empirical material and theoretical directives for further charting of the virtually unexplored terrain of extra-legal muscular politics in the region. Central to the proposed programme of research are the following interrelated objectives: 1) To further develop the method of collaborative political ethnography by designing, collecting and producing case studies which will allow us to write thematically across sites; 2) To generate policy relevant research in the fields of security, conflict, democracy and development; 3) To produce capability by forging an international network of scholars on issues related to democratisation, violence, crime and support the work and careers of the project's 4 Post-docs. The study capitalises on previous research and skills of the PI in the cross-cultural study of democracy and muscular politics in the global South. All members of the research team have expertise in ethnographic research in the difficult spheres of criminal politics, informal economies, and political violence and are hence well and sometimes uniquely equipped to pursue this challenging research thematic.
Max ERC Funding
1 200 000 €
Duration
Start date: 2012-03-01, End date: 2016-02-29
Project acronym AlCat
Project Bond activation and catalysis with low-valent aluminium
Researcher (PI) Michael James COWLEY
Host Institution (HI) THE UNIVERSITY OF EDINBURGH
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Summary
This project will develop the principles required to enable bond-modifying redox catalysis based on aluminium by preparing and studying new Al(I) compounds capable of reversible oxidative addition.
Catalytic processes are involved in the synthesis of 75 % of all industrially produced chemicals, but most catalysts involved are based on precious metals such as rhodium, palladium or platinum. These metals are expensive and their supply limited and unstable; there is a significant need to develop the chemistry of non-precious metals as alternatives. On toxicity and abundance alone, aluminium is an attractive candidate. Furthermore, recent work, including in our group, has demonstrated that Al(I) compounds can perform a key step in catalytic cycles - the oxidative addition of E-H bonds.
In order to realise the significant potential of Al(I) for transition-metal style catalysis we urgently need to:
- establish the principles governing oxidative addition and reductive elimination reactivity in aluminium systems.
- know how the reactivity of Al(I) compounds can be controlled by varying properties of ligand frameworks.
- understand the onward reactivity of oxidative addition products of Al(I) to enable applications in catalysis.
In this project we will:
- Study mechanisms of oxidative addition and reductive elimination of a range of synthetically relevant bonds at Al(I) centres, establishing the principles governing this fundamental reactivity.
- Develop new ligand frameworks to support of Al(I) centres and evaluate the effect of the ligand on oxidative addition/reductive elimination at Al centres.
- Investigate methods for Al-mediated functionalisation of organic compounds by exploring the reactivity of E-H oxidative addition products with unsaturated organic compounds.
Max ERC Funding
1 493 679 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym ALIGN
Project Ab-initio computational modelling of photovoltaic interfaces
Researcher (PI) Feliciano Giustino
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Call Details Starting Grant (StG), PE5, ERC-2009-StG
Summary The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Summary
The aim of the ALIGN project is to understand, predict, and optimize the photovoltaic energy conversion in third-generation solar cells, starting from an atomic-scale quantum-mechanical modelling of the photovoltaic interface. The quest for photovoltaic materials suitable for low-cost synthesis, large-area production, and functional architecture has driven substantial research efforts towards third-generation photovoltaic devices such as plastic solar cells, organic-inorganic cells, and photo-electrochemical cells. The physical and chemical processes involved in the harvesting of sunlight, the transport of electrical charge, and the build-up of the photo-voltage in these devices are fundamentally different from those encountered in traditional semiconductor heterojunction solar cells. A detailed atomic-scale quantum-mechanical description of such processes will lay down the basis for a rational approach to the modelling, optimization, and design of new photovoltaic materials. The short name of the proposal hints at one of the key materials parameters in the area of photovoltaic interfaces: the alignment of the quantum energy levels between the light-absorbing material and the electron acceptor. The level alignment drives the separation of the electron-hole pairs formed upon absorption of sunlight, and determines the open circuit voltage of the solar cell. The energy level alignment not only represents a key parameter for the design of photovoltaic devices, but also constitutes one of the grand challenges of modern computational materials science. Within this project we will develop and apply new ground-breaking computational methods to understand, predict, and optimize the energy level alignment and other design parameters of third-generation photovoltaic devices.
Max ERC Funding
1 000 000 €
Duration
Start date: 2010-03-01, End date: 2016-02-29