Project acronym 3DICE
Project 3D Interstellar Chemo-physical Evolution
Researcher (PI) Valentine Wakelam
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE9, ERC-2013-StG
Summary At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Summary
At the end of their life, stars spread their inner material into the diffuse interstellar medium. This diffuse medium gets locally denser and form dark clouds (also called dense or molecular clouds) whose innermost part is shielded from the external UV field by the dust, allowing for molecules to grow and get more complex. Gravitational collapse occurs inside these dense clouds, forming protostars and their surrounding disks, and eventually planetary systems like (or unlike) our solar system. The formation and evolution of molecules, minerals, ices and organics from the diffuse medium to planetary bodies, their alteration or preservation throughout this cosmic chemical history set the initial conditions for building planets, atmospheres and possibly the first bricks of life. The current view of interstellar chemistry is based on fragmental works on key steps of the sequence that are observed. The objective of this proposal is to follow the fractionation of the elements between the gas-phase and the interstellar grains, from the most diffuse medium to protoplanetary disks, in order to constrain the chemical composition of the material in which planets are formed. The potential outcome of this project is to get a consistent and more accurate description of the chemical evolution of interstellar matter. To achieve this objective, I will improve our chemical model by adding new processes on grain surfaces relevant under the diffuse medium conditions. This upgraded gas-grain model will be coupled to 3D dynamical models of the formation of dense clouds from diffuse medium and of protoplanetary disks from dense clouds. The computed chemical composition will also be used with 3D radiative transfer codes to study the chemical tracers of the physics of protoplanetary disk formation. The robustness of the model predictions will be studied with sensitivity analyses. Finally, model results will be confronted to observations to address some of the current challenges.
Max ERC Funding
1 166 231 €
Duration
Start date: 2013-09-01, End date: 2018-08-31
Project acronym A2C2
Project Atmospheric flow Analogues and Climate Change
Researcher (PI) Pascal Yiou
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary "The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Summary
"The A2C2 project treats two major challenges in climate and atmospheric research: the time dependence of the climate attractor to external forcings (solar, volcanic eruptions and anthropogenic), and the attribution of extreme climate events occurring in the northern extra-tropics. The main difficulties are the limited climate information, the computer cost of model simulations, and mathematical assumptions that are hardly verified and often overlooked in the literature.
A2C2 proposes a practical framework to overcome those three difficulties, linking the theory of dynamical systems and statistics. We will generalize the methodology of flow analogues to multiple databases in order to obtain probabilistic descriptions of analogue decompositions.
The project is divided into three workpackages (WP). WP1 embeds the analogue method in the theory of dynamical systems in order to provide a metric of an attractor deformation in time. The important methodological step is to detect trends or persisting outliers in the dates and scores of analogues when the system yields time-varying forcings. This is done from idealized models and full size climate models in which the forcings (anthropogenic and natural) are known.
A2C2 creates an open source toolkit to compute flow analogues from a wide array of databases (WP2). WP3 treats the two scientific challenges with the analogue method and multiple model ensembles, hence allowing uncertainty estimates under realistic mathematical hypotheses. The flow analogue methodology allows a systematic and quasi real-time analysis of extreme events, which is currently out of the reach of conventional climate modeling approaches.
The major breakthrough of A2C2 is to bridge the gap between operational needs (the immediate analysis of climate events) and the understanding long-term climate changes. A2C2 opens new research horizons for the exploitation of ensembles of simulations and reliable estimates of uncertainty."
Max ERC Funding
1 491 457 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ACCLIMATE
Project Elucidating the Causes and Effects of Atlantic Circulation Changes through Model-Data Integration
Researcher (PI) Claire Waelbroeck
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE10, ERC-2013-ADG
Summary Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Summary
Rapid changes in ocean circulation and climate have been observed in marine sediment and ice cores, notably over the last 60 thousand years (ky), highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing.
To date, these rapid changes in climate and ocean circulation are still not fully explained. Two main obstacles prevent going beyond the current state of knowledge:
- Paleoclimatic proxy data are by essence only indirect indicators of the climatic variables, and thus can not be directly compared with model outputs;
- A 4-D (latitude, longitude, water depth, time) reconstruction of Atlantic water masses over the past 40 ky is lacking: previous studies have generated isolated records with disparate timescales which do not allow the causes of circulation changes to be identified.
Overcoming these two major limitations will lead to major breakthroughs in climate research. Concretely, I will create the first database of Atlantic deep-sea records over the last 40 ky, and extract full climatic information from these records through an innovative model-data integration scheme using an isotopic proxy forward modeling approach. The novelty and exceptional potential of this scheme is twofold: (i) it avoids hypotheses on proxy interpretation and hence suppresses or strongly reduces the errors of interpretation of paleoclimatic records; (ii) it produces states of the climate system that best explain the observations over the last 40 ky, while being consistent with the model physics.
Expected results include:
• The elucidation of the mechanisms explaining rapid changes in ocean circulation and climate over the last 40 ky,
• Improved climate model physics and parameterizations,
• The first projections of future climate changes obtained with a model able to reproduce the highly non linear behavior of the climate system observed over the last 40 ky.
Max ERC Funding
3 000 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym Actanthrope
Project Computational Foundations of Anthropomorphic Action
Researcher (PI) Jean Paul Laumond
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE7, ERC-2013-ADG
Summary Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Summary
Actanthrope intends to promote a neuro-robotics perspective to explore original models of anthropomorphic action. The project targets contributions to humanoid robot autonomy (for rescue and service robotics), to advanced human body simulation (for applications in ergonomics), and to a new theory of embodied intelligence (by promoting a motion-based semiotics of the human action).
Actions take place in the physical space while they originate in the –robot or human– sensory-motor space. Geometry is the core abstraction that makes the link between these spaces. Considering that the structure of actions inherits from that of the body, the underlying intuition is that actions can be segmented within discrete sub-spaces lying in the entire continuous posture space. Such sub-spaces are viewed as symbols bridging deliberative reasoning and reactive control. Actanthrope argues that geometric approaches to motion segmentation and generation as promising and innovative routes to explore embodied intelligence:
- Motion segmentation: what are the sub-manifolds that define the structure of a given action?
- Motion generation: among all the solution paths within a given sub-manifold, what is the underlying law that makes the selection?
In Robotics these questions are related to the competition between abstract symbol manipulation and physical signal processing. In Computational Neuroscience the questions refer to the quest of motion invariants. The ambition of the project is to promote a dual perspective: exploring the computational foundations of human action to make better robots, while simultaneously doing better robotics to better understand human action.
A unique “Anthropomorphic Action Factory” supports the methodology. It aims at attracting to a single lab, researchers with complementary know-how and solid mathematical background. All of them will benefit from unique equipments, while being stimulated by four challenges dealing with locomotion and manipulation actions.
Max ERC Funding
2 500 000 €
Duration
Start date: 2014-01-01, End date: 2018-12-31
Project acronym ACTAR TPC
Project Active Target and Time Projection Chamber
Researcher (PI) Gwen Grinyer
Host Institution (HI) GRAND ACCELERATEUR NATIONAL D'IONS LOURDS
Call Details Starting Grant (StG), PE2, ERC-2013-StG
Summary The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Summary
The active target and time projection chamber (ACTAR TPC) is a novel gas-filled detection system that will permit new studies into the structure and decays of the most exotic nuclei. The use of a gas volume that acts as a sensitive detection medium and as the reaction target itself (an “active target”) offers considerable advantages over traditional nuclear physics detectors and techniques. In high-energy physics, TPC detectors have found profitable applications but their use in nuclear physics has been limited. With the ACTAR TPC design, individual detection pad sizes of 2 mm are the smallest ever attempted in either discipline but is a requirement for high-efficiency and high-resolution nuclear spectroscopy. The corresponding large number of electronic channels (16000 from a surface of only 25×25 cm) requires new developments in high-density electronics and data-acquisition systems that are not yet available in the nuclear physics domain. New experiments in regions of the nuclear chart that cannot be presently contemplated will become feasible with ACTAR TPC.
Max ERC Funding
1 290 000 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym AdOC
Project Advance Optical Clocks
Researcher (PI) Sebastien André Marcel Bize
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE2, ERC-2013-CoG
Summary "The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Summary
"The proposed research program has three main objectives. The first and second objectives are to seek extreme precisions in optical atomic spectroscopy and optical clocks, and to use this quest as a mean of exploration in atomic physics. The third objective is to explore new possibilities that stem from extreme precision. These goals will be pursued via three complementary activities: #1: Search for extreme precisions with an Hg optical lattice clock. #2: Explore and exploit the rich Hg system, which is essentially unexplored in the cold and ultra-cold regime. #3: Identify new applications of clocks with extreme precision to Earth science. Clocks can measure directly the gravitational potential via Einstein’s gravitational redshift, leading to the idea of “clock-based geodesy”.
The 2 first activities are experimental and build on an existing setup, where we demonstrated the feasibility of an Hg optical lattice clock. Hg is chosen for its potential to surpass competing systems. We will investigate the unexplored physics of the Hg clock. This includes interactions between Hg atoms, lattice-induced light shifts, and sensitivity to external fields which are specific to the atomic species. Beyond, we will explore the fundamental limits of the optical lattice scheme. We will exploit other remarkable features of Hg associated to the high atomic number and the diversity of stable isotopes. These features enable tests of fundamental physical laws, ultra-precise measurements of isotope shifts, measurement of collisional properties toward evaporative cooling and quantum gases of Hg, investigation of forbidden transitions promising for measuring the nuclear anapole moment of Hg.
The third activity is theoretical and is aimed at initiating collaborations with experts in modelling Earth gravity. With this expertise, we will identify the most promising and realistic approaches for clocks and emerging remote comparison methods to contribute to geodesy, hydrology, oceanography, etc."
Max ERC Funding
1 946 432 €
Duration
Start date: 2014-04-01, End date: 2019-03-31
Project acronym ALEM
Project ADDITIONAL LOSSES IN ELECTRICAL MACHINES
Researcher (PI) Matti Antero Arkkio
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Advanced Grant (AdG), PE8, ERC-2013-ADG
Summary "Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Summary
"Electrical motors consume about 40 % of the electrical energy produced in the European Union. About 90 % of this energy is converted to mechanical work. However, 0.5-2.5 % of it goes to so called additional load losses whose exact origins are unknown. Our ambitious aim is to reveal the origins of these losses, build up numerical tools for modeling them and optimize electrical motors to minimize the losses.
As the hypothesis of the research, we assume that the additional losses mainly result from the deterioration of the core materials during the manufacturing process of the machine. By calorimetric measurements, we have found that the core losses of electrical machines may be twice as large as comprehensive loss models predict. The electrical steel sheets are punched, welded together and shrink fit to the frame. This causes residual strains in the core sheets deteriorating their magnetic characteristics. The cutting burrs make galvanic contacts between the sheets and form paths for inter-lamination currents. Another potential source of additional losses are the circulating currents between the parallel strands of random-wound armature windings. The stochastic nature of these potential sources of additional losses puts more challenge on the research.
We shall develop a physical loss model that couples the mechanical strains and electromagnetic losses in electrical steel sheets and apply the new model for comprehensive loss analysis of electrical machines. The stochastic variables related to the core losses and circulating-current losses will be discretized together with the temporal and spatial discretization of the electromechanical field variables. The numerical stochastic loss model will be used to search for such machine constructions that are insensitive to the manufacturing defects. We shall validate the new numerical loss models by electromechanical and calorimetric measurements."
Max ERC Funding
2 489 949 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym ARENA
Project Arrays of entangled atoms
Researcher (PI) Antoine Browaeys
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Summary
The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Max ERC Funding
1 449 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ATMOFLEX
Project Turbulent Transport in the Atmosphere: Fluctuations and Extreme Events
Researcher (PI) Jérémie Bec
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Summary
A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31