Project acronym ADEQUATE
Project Advanced optoelectronic Devices with Enhanced QUAntum efficiency at THz frEquencies
Researcher (PI) Carlo Sirtori
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Summary
The aim of this project is the realisation of efficient mid-infrared and THz optoelectronic emitters. This work is motivated by the fact that the spontaneous emission in this frequency range is characterized by an extremely long lifetime when compared to non-radiative processes, giving rise to devices with very low quantum efficiency. To this end we want to develop hybrid light-matter systems, already well known in quantum optics, within optoelectronics devices, that will be driven by electrical injection. With this project we want to extend the field of optoelectronics by introducing some of the concepts of quantum optic, particularly the light-matter strong coupling, into semiconductor devices. More precisely this project aims at the implementation of novel optoelectronic emitters operating in the strong coupling regime between an intersubband excitation of a two-dimensional electron gas and a microcavity photonic mode. The quasiparticles issued from this coupling are called intersubband polaritons. The major difficulties and challenges of this project, do not lay in the observation of these quantum effects, but in their exploitation for a specific function, in particular an efficient electrical to optical conversion. To obtain efficient quantum emitters in the THz frequency range we will follow two different approaches: - In the first case we will try to exploit the additional characteristic time of the system introduced by the light-matter interaction in the strong (or ultra-strong) coupling regime. - The second approach will exploit the fact that, under certain conditions, intersubband polaritons have a bosonic character; as a consequence they can undergo stimulated scattering, giving rise to polaritons lasers as it has been shown for excitonic polaritons.
Max ERC Funding
1 761 000 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym ARENA
Project Arrays of entangled atoms
Researcher (PI) Antoine Browaeys
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Summary
The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Max ERC Funding
1 449 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ATMOFLEX
Project Turbulent Transport in the Atmosphere: Fluctuations and Extreme Events
Researcher (PI) Jérémie Bec
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2009-StG
Summary A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Summary
A major part of the physical and chemical processes occurring in the atmosphere involves the turbulent transport of tiny particles. Current studies and models use a formulation in terms of mean fields, where the strong variations in the dynamical and statistical properties of the particles are neglected and where the underlying fluctuations of the fluid flow velocity are oversimplified. Devising an accurate understanding of the influence of air turbulence and of the extreme fluctuations that it generates in the dispersed phase remains a challenging issue. This project aims at coordinating and integrating theoretical, numerical, experimental, and observational efforts to develop a new statistical understanding of the role of fluctuations in atmospheric transport processes. The proposed work will cover individual as well as collective behaviors and will provide a systematic and unified description of targeted specific processes involving suspended drops or particles: the dispersion of pollutants from a source, the growth by condensation and coagulation of droplets and ice crystals in clouds, the scavenging, settling and re-suspension of aerosols, and the radiative and climatic effects of particles. The proposed approach is based on the use of tools borrowed from statistical physics and field theory, and from the theory of large deviations and of random dynamical systems in order to design new observables that will be simultaneously tractable analytically in simplified models and of relevance for the quantitative handling of such physical mechanisms. One of the outcomes will be to provide a new framework for improving and refining the methods used in meteorology and atmospheric sciences and to answer the long-standing question of the effects of suspended particles onto climate.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym ATOMAG
Project From Attosecond Magnetism towards Ultrafast Spin Photonics
Researcher (PI) Jean-Yves Bigot
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE3, ERC-2009-AdG
Summary We propose to investigate a new frontier in Physics: the study of Magnetic systems using attosecond laser pulses. The main disciplines concerned are: Ultrafast laser sciences, Magnetism and Spin-Photonics, Relativistic Quantum Electrodynamics. Three issues of modern magnetism are addressed. 1. How fast can one modify and control the magnetization of a magnetic system ? 2. What is the role and essence of the coherent interaction between light and spins ? 3. How far spin-photonics can bring us to the real world of data acquisition and storage ? - We want first to provide solid ground experiments, unravelling the mechanisms involved in the demagnetization induced by laser pulses in a variety of magnetic materials (ferromagnetic nanostructures, aggregates and molecular magnets). We will explore the ultrafast magnetization dynamics of magnets using an attosecond laser source. - Second we want to explore how the photon field interacts with the spins. We will investigate the dynamical regime when the potential of the atoms is dressed by the Coulomb potential induced by the laser field. A strong support from the relativistic Quantum Electro-Dynamics is necessary towards that goal. - Third, even though our general approach is fundamental, we want to provide a benchmark of what is realistically possible in ultrafast spin-photonics, breaking the conventional thought that spin photonics is hard to implement at the application level. We will realize ultimate devices combining magneto-optical microscopy with the conventional magnetic recording. This new field will raise the interest of a number of competitive laboratories at the international level. Due to the overlapping disciplines the project also carries a large amount of educational impact both fundamental and applied.
Summary
We propose to investigate a new frontier in Physics: the study of Magnetic systems using attosecond laser pulses. The main disciplines concerned are: Ultrafast laser sciences, Magnetism and Spin-Photonics, Relativistic Quantum Electrodynamics. Three issues of modern magnetism are addressed. 1. How fast can one modify and control the magnetization of a magnetic system ? 2. What is the role and essence of the coherent interaction between light and spins ? 3. How far spin-photonics can bring us to the real world of data acquisition and storage ? - We want first to provide solid ground experiments, unravelling the mechanisms involved in the demagnetization induced by laser pulses in a variety of magnetic materials (ferromagnetic nanostructures, aggregates and molecular magnets). We will explore the ultrafast magnetization dynamics of magnets using an attosecond laser source. - Second we want to explore how the photon field interacts with the spins. We will investigate the dynamical regime when the potential of the atoms is dressed by the Coulomb potential induced by the laser field. A strong support from the relativistic Quantum Electro-Dynamics is necessary towards that goal. - Third, even though our general approach is fundamental, we want to provide a benchmark of what is realistically possible in ultrafast spin-photonics, breaking the conventional thought that spin photonics is hard to implement at the application level. We will realize ultimate devices combining magneto-optical microscopy with the conventional magnetic recording. This new field will raise the interest of a number of competitive laboratories at the international level. Due to the overlapping disciplines the project also carries a large amount of educational impact both fundamental and applied.
Max ERC Funding
2 492 561 €
Duration
Start date: 2010-05-01, End date: 2015-04-30
Project acronym CONTACTMATH
Project Legendrian contact homology and generating families
Researcher (PI) Frédéric Bourgeois
Host Institution (HI) UNIVERSITE PARIS-SUD
Call Details Starting Grant (StG), PE1, ERC-2009-StG
Summary A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area that studies intrinsic questions about existence, (non) uniqueness and rigidity of contact and symplectic structures. It is intimately related to many other important disciplines, such as dynamical systems, singularity theory, knot theory, Morse theory, complex analysis, ... Legendrian submanifolds are a distinguished class of submanifolds in a contact manifold, which are tangent to the contact distribution. These manifolds are of a particular interest in contact topology. Important classes of Legendrian submanifolds can be described using generating families, and this description can be used to define Legendrian invariants via Morse theory. Other the other hand, Legendrian contact homology is an invariant for Legendrian submanifolds, based on holomorphic curves. The goal of this research proposal is to study the relationship between these two approaches. More precisely, we plan to show that the generating family homology and the linearized Legendrian contact homology can be defined for the same class of Legendrian submanifolds, and are isomorphic. This correspondence should be established using a parametrized version of symplectic homology, being developed by the Principal Investigator in collaboration with Oancea. Such a result would give an entirely new type of information about holomorphic curves invariants. Moreover, it can be used to obtain more general structural results on linearized Legendrian contact homology, to extend recent results on existence of Reeb chords, and to gain a much better understanding of the geography of Legendrian submanifolds.
Summary
A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area that studies intrinsic questions about existence, (non) uniqueness and rigidity of contact and symplectic structures. It is intimately related to many other important disciplines, such as dynamical systems, singularity theory, knot theory, Morse theory, complex analysis, ... Legendrian submanifolds are a distinguished class of submanifolds in a contact manifold, which are tangent to the contact distribution. These manifolds are of a particular interest in contact topology. Important classes of Legendrian submanifolds can be described using generating families, and this description can be used to define Legendrian invariants via Morse theory. Other the other hand, Legendrian contact homology is an invariant for Legendrian submanifolds, based on holomorphic curves. The goal of this research proposal is to study the relationship between these two approaches. More precisely, we plan to show that the generating family homology and the linearized Legendrian contact homology can be defined for the same class of Legendrian submanifolds, and are isomorphic. This correspondence should be established using a parametrized version of symplectic homology, being developed by the Principal Investigator in collaboration with Oancea. Such a result would give an entirely new type of information about holomorphic curves invariants. Moreover, it can be used to obtain more general structural results on linearized Legendrian contact homology, to extend recent results on existence of Reeb chords, and to gain a much better understanding of the geography of Legendrian submanifolds.
Max ERC Funding
710 000 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym DECLIC
Project Exploring the Decoherence of Light in Cavities
Researcher (PI) Serge Haroche
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary The transition from quantum to classical is an essential issue in physics. At a practical level, quantum information thrives to build large quantum systems for tasks in communication or computing beyond the reach of classical devices. At the fundamental level, the question is whether there exists, in addition to environment-induced decoherence, another mechanism responsible for the disappearance of state superpositions at the macroscopic scale. Harmonic oscillators coupled to qubits are ideal to probe the limits of the quantum domain. Among various versions of this system, microwave Cavity Quantum Electrodynamics coupling Rydberg atoms to superconducting cavities has developed tools of un-matched sensitivity and precision. Building on these advances and on the development of deterministic atomic sources, DECLIC proposes to explore the dynamics of fields trapped in cavities and to study their decoherence under various perspectives. It will implement novel ways to generate non-classical states with large photon numbers stored in one cavity or non-locally split between two. DECLIC will record the gradual evolution of these states towards classicality and locality. Along this way, it will explore promising processes such as quantum random walks and collective photonic effects leading to non-classical interferometry breaking the standard quantum limit. Beyond witnessing decoherence, DECLIC will investigate ways to manipulate and control it, either by implementing feedback procedures steering the field towards targeted states, or by engineering artificial environments protecting against decoherence specific states of light. These experiments will provide invaluable clues for the understanding of other oscillator-qubit systems exploring the quantum to classical boundary.
Summary
The transition from quantum to classical is an essential issue in physics. At a practical level, quantum information thrives to build large quantum systems for tasks in communication or computing beyond the reach of classical devices. At the fundamental level, the question is whether there exists, in addition to environment-induced decoherence, another mechanism responsible for the disappearance of state superpositions at the macroscopic scale. Harmonic oscillators coupled to qubits are ideal to probe the limits of the quantum domain. Among various versions of this system, microwave Cavity Quantum Electrodynamics coupling Rydberg atoms to superconducting cavities has developed tools of un-matched sensitivity and precision. Building on these advances and on the development of deterministic atomic sources, DECLIC proposes to explore the dynamics of fields trapped in cavities and to study their decoherence under various perspectives. It will implement novel ways to generate non-classical states with large photon numbers stored in one cavity or non-locally split between two. DECLIC will record the gradual evolution of these states towards classicality and locality. Along this way, it will explore promising processes such as quantum random walks and collective photonic effects leading to non-classical interferometry breaking the standard quantum limit. Beyond witnessing decoherence, DECLIC will investigate ways to manipulate and control it, either by implementing feedback procedures steering the field towards targeted states, or by engineering artificial environments protecting against decoherence specific states of light. These experiments will provide invaluable clues for the understanding of other oscillator-qubit systems exploring the quantum to classical boundary.
Max ERC Funding
2 500 000 €
Duration
Start date: 2010-02-01, End date: 2016-01-31
Project acronym DELPHI
Project Deterministic Logical Photon-Photon Interactions
Researcher (PI) Philippe Grangier
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE2, ERC-2009-AdG
Summary The main objective of this proposal is to design and implement a novel scheme for efficient, deterministic, lossless photon-photon interactions, and to exploit it to achieve logical processing and quantum measurements on optical light beams. For that purpose, we will create, study and exploit a new transparent medium, based on the transient excitation of Rydberg polaritons, where the optical non-linearities are so large that they can act at the single photon level. These techniques will be applied to perform quantum measurements and manipulations of light beams. This will include the deterministic generation of single photons and optical Schrödinger's cat states, the implementation of quantum non-demolition (QND) measurements for the photon number and the parity operators, and the demonstration of controlled-phase and controlled-not quantum gates. These operations will be implemented in the optical domain, where they can be combined with efficient propagation in free space or in optical fibers, and with high efficiency detectors already available, in order to open an avenue towards a fully deterministic quantum engineering of light.
Summary
The main objective of this proposal is to design and implement a novel scheme for efficient, deterministic, lossless photon-photon interactions, and to exploit it to achieve logical processing and quantum measurements on optical light beams. For that purpose, we will create, study and exploit a new transparent medium, based on the transient excitation of Rydberg polaritons, where the optical non-linearities are so large that they can act at the single photon level. These techniques will be applied to perform quantum measurements and manipulations of light beams. This will include the deterministic generation of single photons and optical Schrödinger's cat states, the implementation of quantum non-demolition (QND) measurements for the photon number and the parity operators, and the demonstration of controlled-phase and controlled-not quantum gates. These operations will be implemented in the optical domain, where they can be combined with efficient propagation in free space or in optical fibers, and with high efficiency detectors already available, in order to open an avenue towards a fully deterministic quantum engineering of light.
Max ERC Funding
2 496 000 €
Duration
Start date: 2010-01-01, End date: 2014-12-31
Project acronym DELPHINS
Project DESIGN AND ELABORATION OFMULTI-PHYSICS INTEGRATED NANOSYSTEMS
Researcher (PI) Thomas Ernst
Host Institution (HI) COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Call Details Starting Grant (StG), PE7, ERC-2009-StG
Summary The innovation of DELPHINS application will consist in building a generic multi-sensor design platform for embedded multi-gas-analysis-on-chip, based on a global modelling from the individual NEMS sensors to a global multiphysics NEMS-CMOS VLSI (Very large Scale Integration) system. The latter constitute a new research field with many potential applications such as in medicine (specific diseases recognition) but also in security (toxic and complex air pollutions), in industry (perfumes, agribusiness) and environment control. As an example, several studies in the last 10 years have demonstrated that some specific combination of biomarkers in breath above a given threshold could indicate early stage of diseases. More generally, patterns of breathing gas could constitute a virtual fingerprint of specific pathologies. NEMS (Nano-Electro-Mechanical Systems) based sensor is one of the most promising technologies to get the required resolutions and sensitivities for few molecules detection. We will focus on the analytical module of the system (sensing part + embedded electronics processing) that will include ultra-dense (more than thousands) NEMS arrays with state-of the art CMOS transistors. We will obtain integrated nano-oscillators individually addressed within an innovative architecture inspired from memory and imaging technologies. Few molecules sensitivity will be achieved thanks to suspended resonant nanowires co-integrated locally with their closed-loop and reading electronics. This would make possible the analysis of complex gases within an integrated portable system, which does not exist yet.
Summary
The innovation of DELPHINS application will consist in building a generic multi-sensor design platform for embedded multi-gas-analysis-on-chip, based on a global modelling from the individual NEMS sensors to a global multiphysics NEMS-CMOS VLSI (Very large Scale Integration) system. The latter constitute a new research field with many potential applications such as in medicine (specific diseases recognition) but also in security (toxic and complex air pollutions), in industry (perfumes, agribusiness) and environment control. As an example, several studies in the last 10 years have demonstrated that some specific combination of biomarkers in breath above a given threshold could indicate early stage of diseases. More generally, patterns of breathing gas could constitute a virtual fingerprint of specific pathologies. NEMS (Nano-Electro-Mechanical Systems) based sensor is one of the most promising technologies to get the required resolutions and sensitivities for few molecules detection. We will focus on the analytical module of the system (sensing part + embedded electronics processing) that will include ultra-dense (more than thousands) NEMS arrays with state-of the art CMOS transistors. We will obtain integrated nano-oscillators individually addressed within an innovative architecture inspired from memory and imaging technologies. Few molecules sensitivity will be achieved thanks to suspended resonant nanowires co-integrated locally with their closed-loop and reading electronics. This would make possible the analysis of complex gases within an integrated portable system, which does not exist yet.
Max ERC Funding
1 723 206 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym EXPLORERS
Project EXPLORERS Exploring epigenetic robotics: raising intelligence in machines
Researcher (PI) Pierre-Yves Oudeyer
Host Institution (HI) INSTITUT NATIONAL DE RECHERCHE ENINFORMATIQUE ET AUTOMATIQUE
Call Details Starting Grant (StG), PE6, ERC-2009-StG
Summary In spite of considerable work in artificial intelligence, machine learning, and pattern recognition in the past 50 years, we have no machine capable of adapting to the physical and social environment with the flexibility, robustness and versatility of a 6-months old human child. Instead of trying to simulate directly the adult s intelligence, EXPLORERS proposes to focus on the developmental principles that give rise to intelligence in infants by re-implementing them in machines. Framed in the developmental/epigenetic robotics research agenda, and grounded in research in developmental psychology, its main target is to build robotic machines capable of autonomously learning and re-using a variety of skills and know-how that were not specified at design time, and with initially limited knowledge of the body and of the environment in which it will operate. This implies several fundamental issues: How can a robot discover its body and its relationships with the physical and social environment? How can it learn new skills without the intervention of an engineer? What internal motivations shall guide its exploration of vast spaces of skills? Can it learn through natural social interactions with humans? How to represent the learnt skills and how can they be re-used? EXPLORERS attacks directly those questions by proposing a series of fundamental scientific and technological advances, including computational intrinsic motivation systems for learning basic sensorimotor skills reused for grounded acquisition of the meaning of new words. This project not only addresses fundamental scientific questions, but also relates to important societal issues: personal home robots are bound to become part of everyday life in the 21st century, in particular as helpful social companions in an aging society. EXPLORERS objectives converge to the challenges implied by this vision: robots will have to be able to adapt and learn new skills in the unknown homes of users who are not engineers.
Summary
In spite of considerable work in artificial intelligence, machine learning, and pattern recognition in the past 50 years, we have no machine capable of adapting to the physical and social environment with the flexibility, robustness and versatility of a 6-months old human child. Instead of trying to simulate directly the adult s intelligence, EXPLORERS proposes to focus on the developmental principles that give rise to intelligence in infants by re-implementing them in machines. Framed in the developmental/epigenetic robotics research agenda, and grounded in research in developmental psychology, its main target is to build robotic machines capable of autonomously learning and re-using a variety of skills and know-how that were not specified at design time, and with initially limited knowledge of the body and of the environment in which it will operate. This implies several fundamental issues: How can a robot discover its body and its relationships with the physical and social environment? How can it learn new skills without the intervention of an engineer? What internal motivations shall guide its exploration of vast spaces of skills? Can it learn through natural social interactions with humans? How to represent the learnt skills and how can they be re-used? EXPLORERS attacks directly those questions by proposing a series of fundamental scientific and technological advances, including computational intrinsic motivation systems for learning basic sensorimotor skills reused for grounded acquisition of the meaning of new words. This project not only addresses fundamental scientific questions, but also relates to important societal issues: personal home robots are bound to become part of everyday life in the 21st century, in particular as helpful social companions in an aging society. EXPLORERS objectives converge to the challenges implied by this vision: robots will have to be able to adapt and learn new skills in the unknown homes of users who are not engineers.
Max ERC Funding
1 572 215 €
Duration
Start date: 2009-12-01, End date: 2015-05-31
Project acronym FRECQUAM
Project Frequency Combs Quantum Metrology
Researcher (PI) Nicolas Treps
Host Institution (HI) UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Optical frequency combs are extraordinary tools for metrology which have been recently crowned by a Nobel prize: they have replaced complicated frequency chains to perform direct frequency and time measurements with much higher accuracy, which is now getting close to the quantum limit. However, quantum aspects of measurements performed with these sources have not yet been studied. This is the subject of this proposal. Based on model experiments such as space-time positioning, dispersion, velocity or frequency measurements, we propose to assess and reach experimentally ultimate limits derived from information theory in presence of quantum noise. We also propose to go beyond these limits using non-classical states. More specifically, we propose to fulfil the following objectives : " Objective 1 : achieve the best absolute space-time positioning sensitivity ever using quantum optics techniques applied to frequency combs. " Objective 2 : apply those techniques to other high sensitivity measurement such as dispersion, velocity or frequency metrology. " Objective 3 : explore fundamental quantum physics effects in the lab with quantum frequency combs. These tasks will be performed by developing a quantum frequency comb factory, based on mode locked laser sources and parametric oscillators, whose conception is a research line in itself, and that would also be used for new quantum states generation such as macroscopic entanglement and multimode states.
Summary
Optical frequency combs are extraordinary tools for metrology which have been recently crowned by a Nobel prize: they have replaced complicated frequency chains to perform direct frequency and time measurements with much higher accuracy, which is now getting close to the quantum limit. However, quantum aspects of measurements performed with these sources have not yet been studied. This is the subject of this proposal. Based on model experiments such as space-time positioning, dispersion, velocity or frequency measurements, we propose to assess and reach experimentally ultimate limits derived from information theory in presence of quantum noise. We also propose to go beyond these limits using non-classical states. More specifically, we propose to fulfil the following objectives : " Objective 1 : achieve the best absolute space-time positioning sensitivity ever using quantum optics techniques applied to frequency combs. " Objective 2 : apply those techniques to other high sensitivity measurement such as dispersion, velocity or frequency metrology. " Objective 3 : explore fundamental quantum physics effects in the lab with quantum frequency combs. These tasks will be performed by developing a quantum frequency comb factory, based on mode locked laser sources and parametric oscillators, whose conception is a research line in itself, and that would also be used for new quantum states generation such as macroscopic entanglement and multimode states.
Max ERC Funding
1 126 000 €
Duration
Start date: 2010-02-01, End date: 2016-01-31