Project acronym A-HERO
Project Anthelmintic Research and Optimization
Researcher (PI) Jennifer Irene Keiser
Host Institution (HI) SCHWEIZERISCHES TROPEN- UND PUBLIC HEALTH-INSTITUT
Call Details Consolidator Grant (CoG), LS7, ERC-2013-CoG
Summary "I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Summary
"I propose an ambitious, yet feasible 5-year research project that will fill an important gap in global health. Specifically, I will develop and validate novel approaches for anthelmintic drug discovery and development. My proposal pursues the following five research questions: (i) Is a chip calorimeter suitable for high-throughput screening in anthelmintic drug discovery? (ii) Is combination chemotherapy safe and more efficacious than monotherapy against strongyloidiasis and trichuriasis? (iii) What are the key pharmacokinetic parameters of praziquantel in preschool-aged children and school-aged children infected with Schistosoma mansoni and S. haematobium using a novel and validated technology based on dried blood spotting? (iv) What are the metabolic consequences and clearance of praziquantel treatment in S. mansoni-infected mice and S. mansoni- and S. haematobium-infected children? (v) Which is the ideal compartment to study pharmacokinetic parameters for intestinal nematode infections and does age, nutrition, co-infection and infection intensity influence the efficacy of anthelmintic drugs?
My proposed research is of considerable public health relevance since it will ultimately result in improved treatments for soil-transmitted helminthiasis and pediatric schistosomiasis. Additionally, at the end of this project, I have generated comprehensive information on drug disposition of anthelmintics. A comprehensive database of metabolite profiles following praziquantel treatment will be available. Finally, the proof-of-concept of chip calorimetry in anthelmintic drug discovery has been established and broadly validated."
Max ERC Funding
1 927 350 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym ACQDIV
Project Acquisition processes in maximally diverse languages: Min(d)ing the ambient language
Researcher (PI) Sabine Erika Stoll
Host Institution (HI) UNIVERSITAT ZURICH
Call Details Consolidator Grant (CoG), SH4, ERC-2013-CoG
Summary "Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Summary
"Children learn any language that they grow up with, adapting to any of the ca. 7000 languages of the world, no matter how divergent or complex their structures are. What cognitive processes make this extreme flexibility possible? This is one of the most burning questions in cognitive science and the ACQDIV project aims at answering it by testing and refining the following leading hypothesis: Language acquisition is flexible and adaptive to any kind of language because it relies on a small set of universal cognitive processes that variably target different structures at different times during acquisition in every language. The project aims at establishing the precise set of processes and at determining the conditions of variation across maximally diverse languages. This project focuses on three processes: (i) distributional learning, (ii) generalization-based learning and (iii) interaction-based learning. To investigate these processes I will work with a sample of five clusters of languages including longitudinal data of two languages each. The clusters were determined by a clustering algorithm seeking the structurally most divergent languages in a typological database. The languages are: Cluster 1: Slavey and Cree, Cluster 2: Indonesian and Yucatec, Cluster 3: Inuktitut and Chintang, Cluster 4: Sesotho and Russian, Cluster 5: Japanese and Turkish. For all languages, corpora are available, except for Slavey where fieldwork is planned. The leading hypothesis will be tested against the acquisition of aspect and negation in each language of the sample and also against the two structures in each language that are most salient and challenging in them (e. g. complex morphology in Chintang). The acquisition processes also depend on statistical patterns in the input children receive. I will examine these patterns across the sample with respect to repetitiveness effects, applying data-mining methods and systematically comparing child-directed and child-surrounding speech."
Max ERC Funding
1 998 438 €
Duration
Start date: 2014-09-01, End date: 2019-08-31
Project acronym ADHESWITCHES
Project Adhesion switches in cancer and development: from in vivo to synthetic biology
Researcher (PI) Mari Johanna Ivaska
Host Institution (HI) TURUN YLIOPISTO
Call Details Consolidator Grant (CoG), LS3, ERC-2013-CoG
Summary Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Summary
Integrins are transmembrane cell adhesion receptors controlling cell proliferation and migration. Our objective is to gain fundamentally novel mechanistic insight into the emerging new roles of integrins in cancer and to generate a road map of integrin dependent pathways critical in mammary gland development and integrin signalling thus opening new targets for therapeutic interventions. We will combine an in vivo based translational approach with cell and molecular biological studies aiming to identify entirely novel concepts in integrin function using cutting edge techniques and synthetic-biology tools.
The specific objectives are:
1) Integrin inactivation in branching morphogenesis and cancer invasion. Integrins regulate mammary gland development and cancer invasion but the role of integrin inactivating proteins in these processes is currently completely unknown. We will investigate this using genetically modified mice, ex-vivo organoid models and human tissues with the aim to identify beneficial combinational treatments against cancer invasion.
2) Endosomal adhesomes – cross-talk between integrin activity and integrin “inside-in signaling”. We hypothesize that endocytosed active integrins engage in specialized endosomal signaling that governs cell survival especially in cancer. RNAi cell arrays, super-resolution STED imaging and endosomal proteomics will be used to investigate integrin signaling in endosomes.
3) Spatio-temporal co-ordination of adhesion and endocytosis. Several cytosolic proteins compete for integrin binding to regulate activation, endocytosis and recycling. Photoactivatable protein-traps and predefined matrix micropatterns will be employed to mechanistically dissect the spatio-temporal dynamics and hierarchy of their recruitment.
We will employ innovative and unconventional techniques to address three major unanswered questions in the field and significantly advance our understanding of integrin function in development and cancer.
Max ERC Funding
1 887 910 €
Duration
Start date: 2014-05-01, End date: 2019-04-30
Project acronym Amitochondriates
Project Life without mitochondrion
Researcher (PI) Vladimir HAMPL
Host Institution (HI) UNIVERZITA KARLOVA
Call Details Consolidator Grant (CoG), LS8, ERC-2017-COG
Summary Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Summary
Mitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
Max ERC Funding
1 935 500 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ANTILEAK
Project Development of antagonists of vascular leakage
Researcher (PI) Pipsa SAHARINEN
Host Institution (HI) HELSINGIN YLIOPISTO
Call Details Consolidator Grant (CoG), LS4, ERC-2017-COG
Summary Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Summary
Dysregulation of capillary permeability is a severe problem in critically ill patients, but the mechanisms involved are poorly understood. Further, there are no targeted therapies to stabilize leaky vessels in various common, potentially fatal diseases, such as systemic inflammation and sepsis, which affect millions of people annually. Although a multitude of signals that stimulate opening of endothelial cell-cell junctions leading to permeability have been characterized using cellular and in vivo models, approaches to reverse the harmful process of capillary leakage in disease conditions are yet to be identified. I propose to explore a novel autocrine endothelial permeability regulatory system as a potentially universal mechanism that antagonizes vascular stabilizing ques and sustains vascular leakage in inflammation. My group has identified inflammation-induced mechanisms that switch vascular stabilizing factors into molecules that destabilize vascular barriers, and identified tools to prevent the barrier disruption. Building on these discoveries, my group will use mouse genetics, structural biology and innovative, systematic antibody development coupled with gene editing and gene silencing technology, in order to elucidate mechanisms of vascular barrier breakdown and repair in systemic inflammation. The expected outcomes include insights into endothelial cell signaling and permeability regulation, and preclinical proof-of-concept antibodies to control endothelial activation and vascular leakage in systemic inflammation and sepsis models. Ultimately, the new knowledge and preclinical tools developed in this project may facilitate future development of targeted approaches against vascular leakage.
Max ERC Funding
1 999 770 €
Duration
Start date: 2018-05-01, End date: 2023-04-30
Project acronym ATTOLIQ
Project Attosecond X-ray spectroscopy of liquids
Researcher (PI) Hans Jakob WÖRNER
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE4, ERC-2017-COG
Summary Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Summary
Charge and energy transfer are the key steps underlying most chemical reactions and biological transformations. The purely electronic dynamics that control such processes take place on attosecond time scales. A complete understanding of these dynamics on the electronic level therefore calls for new experimental methods with attosecond resolution that are applicable to aqueous environments. We propose to combine the element sensitivity of X-ray spectroscopy with attosecond temporal resolution and ultrathin liquid microjets to study electronic dynamics of relevance to chemical, biological and photovoltaic processes. We will build on our recent achievements in demonstrating femtosecond time-resolved measurements in the water, attosecond pho-toelectron spectroscopy on a liquid microjet and measuring and controlling attosecond charge migration in isolated molecules. We will first concentrate on liquid water to study its electronic dynamics following outer-valence ionization, the formation pathway of the solvated electron and the time scales and intermolecular Coulombic decay following inner-valence or core-level ionization. Second, we will turn to solvated species and measure electronic dynamics and charge migration in solvated molecules, transition-metal complexes and pho-toexcited nanoparticles. These goals will be achieved by developing several innovative experimental tech-niques. We will develop a source of isolated attosecond pulses covering the water window (285-538 eV) and combine it with a flat liquid microjet to realize attosecond transient absorption in liquids. We will complement these measurements with attosecond X-ray emission spectroscopy, Auger spectroscopy and a novel hetero-dyne-detected variant of resonant inelastic Raman scattering, exploiting the large bandwidth that is naturally available from attosecond X-ray sources.
Max ERC Funding
2 750 000 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym BEHAVFRICTIONS
Project Behavioral Implications of Information-Processing Frictions
Researcher (PI) Jakub STEINER
Host Institution (HI) NARODOHOSPODARSKY USTAV AKADEMIE VED CESKE REPUBLIKY VEREJNA VYZKUMNA INSTITUCE
Call Details Consolidator Grant (CoG), SH1, ERC-2017-COG
Summary BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Summary
BEHAVFRICTIONS will use novel models focussing on information-processing frictions to explain choice patterns described in behavioral economics and psychology. The proposed research will provide microfoundations that are essential for (i) identification of stable preferences, (ii) counterfactual predictions, and (iii) normative conclusions.
(i) Agents who face information-processing costs must trade the precision of choice against information costs. Their behavior thus reflects both their stable preferences and the context-dependent procedures that manage their errors stemming from imperfect information processing. In the absence of micro-founded models, the two drivers of the behavior are difficult to disentangle for outside observers. In some pillars of the proposal, the agents follow choice rules that closely resemble logit rules used in structural estimation. This will allow me to reinterpret the structural estimation fits to choice data and to make a distinction between the stable preferences and frictions.
(ii) Such a distinction is important in counterfactual policy analysis because the second-best decision procedures that manage the errors in choice are affected by the analysed policy. Incorporation of the information-processing frictions into existing empirical methods will improve our ability to predict effects of the policies.
(iii) My preliminary results suggest that when an agent is prone to committing errors, biases--such as overconfidence, confirmatory bias, or perception biases known from prospect theory--arise under second-best strategies. By providing the link between the agent's environment and the second-best distribution of the perception errors, my models will delineate environments in which these biases shield the agents from the most costly mistakes from environments in which the biases turn into maladaptations. The distinction will inform the normative debate on debiasing.
Max ERC Funding
1 321 488 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BLACARAT
Project "Black Carbon in the Atmosphere: Emissions, Aging and Cloud Interactions"
Researcher (PI) Martin Gysel Beer
Host Institution (HI) PAUL SCHERRER INSTITUT
Call Details Consolidator Grant (CoG), PE10, ERC-2013-CoG
Summary "Atmospheric aerosol particles have been shown to impact the earth's climate because they scatter and absorb solar radiation (direct effect) and because they can modify the microphysical properties of clouds by acting as cloud condensation nuclei or ice nuclei (indirect effects). Radiative forcing by anthropogenic aerosols remains poorly quantified, thus leading to considerable uncertainty in our understanding of the earth’s climate response to the radiative forcing by greenhouse gases. Black carbon (BC), mostly emitted by anthropogenic combustion processes and biomass burning, is an important component of atmospheric aerosols. Estimates show that BC may be the second strongest contributor (after CO2) to global warming. Adverse health effects due to particulate air pollution have also been associated with traffic-related BC particles. These climate and health effects brought BC emission reductions into the political focus of possible mitigation strategies with immediate and multiple benefits for human well-being.
Laboratory experiments aim at the physical and chemical characterisation of BC emissions from diesel engines and biomass burning under controlled conditions. A mobile laboratory equipped with state-of-the-art aerosol sensors will be used to determine the contribution of different BC sources to atmospheric BC loadings, and to investigate the evolution of the relevant BC properties with atmospheric aging during transport from sources to remote areas. The interactions of BC particles with clouds as a function of BC properties will be investigated with in-situ measurements by operating quantitative single particle instruments behind a novel sampling inlet, which makes selective sampling of interstitial, cloud droplet residual or ice crystal residual particles possible. Above experimental studies aim at improving our understanding of BC’s atmospheric life cycle and will be used in model simulations for quantitatively assessing the atmospheric impacts of BC."
Summary
"Atmospheric aerosol particles have been shown to impact the earth's climate because they scatter and absorb solar radiation (direct effect) and because they can modify the microphysical properties of clouds by acting as cloud condensation nuclei or ice nuclei (indirect effects). Radiative forcing by anthropogenic aerosols remains poorly quantified, thus leading to considerable uncertainty in our understanding of the earth’s climate response to the radiative forcing by greenhouse gases. Black carbon (BC), mostly emitted by anthropogenic combustion processes and biomass burning, is an important component of atmospheric aerosols. Estimates show that BC may be the second strongest contributor (after CO2) to global warming. Adverse health effects due to particulate air pollution have also been associated with traffic-related BC particles. These climate and health effects brought BC emission reductions into the political focus of possible mitigation strategies with immediate and multiple benefits for human well-being.
Laboratory experiments aim at the physical and chemical characterisation of BC emissions from diesel engines and biomass burning under controlled conditions. A mobile laboratory equipped with state-of-the-art aerosol sensors will be used to determine the contribution of different BC sources to atmospheric BC loadings, and to investigate the evolution of the relevant BC properties with atmospheric aging during transport from sources to remote areas. The interactions of BC particles with clouds as a function of BC properties will be investigated with in-situ measurements by operating quantitative single particle instruments behind a novel sampling inlet, which makes selective sampling of interstitial, cloud droplet residual or ice crystal residual particles possible. Above experimental studies aim at improving our understanding of BC’s atmospheric life cycle and will be used in model simulations for quantitatively assessing the atmospheric impacts of BC."
Max ERC Funding
1 992 015 €
Duration
Start date: 2014-03-01, End date: 2019-02-28
Project acronym CAVITYQPD
Project Cavity quantum phonon dynamics
Researcher (PI) Mika Antero Sillanpää
Host Institution (HI) AALTO KORKEAKOULUSAATIO SR
Call Details Consolidator Grant (CoG), PE3, ERC-2013-CoG
Summary "Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Summary
"Large bodies usually follow the classical equations of motion. Deviations from this can be called
macroscopic quantum behavior. These phenomena have been experimentally verified with cavity Quantum
Electro Dynamics (QED), trapped ions, and superconducting Josephson junction systems. Recently, evidence
was obtained that also moving objects can display such behavior. These objects are micromechanical
resonators (MR), which can measure tens of microns in size and are hence quite macroscopic. The degree of
freedom is their vibrations: phonons.
I propose experimental research in order to push quantum mechanics closer to the classical world than ever
before. I will try find quantum behavior in the most classical objects, that is, slowly moving bodies. I will use
MR's, accessed via electrical resonators. Part of it will be in analogy to the previously studied macroscopic
systems, but with photons replaced by phonons. The experiments are done in a cryogenic temperature mostly
in dilution refrigerator. The work will open up new perspectives on how nature works, and can have
technological implications.
The first basic setup is the coupling of MR to microwave cavity resonators. This is a direct analogy to
optomechanics, and can be called circuit optomechanics. The goals will be phonon state transfer via a cavity
bus, construction of squeezed states and of phonon-cavity entanglement. The second setup is to boost the
optomechanical coupling with a Josephson junction system, and reach the single-phonon strong-coupling for
the first time. The third setup is the coupling of MR to a Josephson junction artificial atom. Here we will
access the MR same way as the motion of a trapped ions is coupled to their internal transitions. In this setup,
I am proposing to construct exotic quantum states of motion, and finally entangle and transfer phonons over
mm-distance via cavity-coupled qubits. I believe within the project it is possible to perform rudimentary Bell
measurement with phonons."
Max ERC Funding
2 004 283 €
Duration
Start date: 2015-01-01, End date: 2019-12-31
Project acronym CICHLIDX
Project An integrative approach towards the understanding of an adaptive radiation of East African cichlid fishes
Researcher (PI) Walter Salzburger
Host Institution (HI) UNIVERSITAT BASEL
Call Details Consolidator Grant (CoG), LS8, ERC-2013-CoG
Summary "More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Summary
"More than 150 years after the publication of Charles Darwin’s The Origin of Species, the identification of the processes that govern the emergence of novel species remains a fundamental problem to biology. Why is it that some groups have diversified in a seemingly explosive manner, while others have lingered unvaried over millions of years? What are the external factors and environmental conditions that promote organismal diversity? And what is the molecular basis of adaptation and diversification? A key to these and related questions is the comparative study of exceptionally diverse yet relatively recent species assemblages such as Darwin’s finches, the Caribbean anole lizards, or the hundreds of endemic species of cichlid fishes in the East African Great Lakes, which are at the center of this proposal. More specifically, I intend to conduct the so far most thorough examination of a large adaptive radiation, combining in-depth eco-morphological assessments and whole genome sequencing of all members of a cichlid species flock. To this end, I plan to (i) sequence the genomes and transcriptomes of several specimens of each cichlid species from Lake Tanganyika to examine genetic and transcriptional diversity; (ii) apply stable-isotope and stomach-content analyses in combination with underwater transplant experiments and transect surveys to quantitate feeding performances, habitat preferences and natural-history parameters; (iii) use X-ray computed tomography to study phenotypic variation in 3D; and (iv) examine fossils from existing and forthcoming drilling cores to implement a time line of diversification in a cichlid adaptive radiation. This project, thus, offers the unique opportunity to test recent theory- and data-based predictions on speciation and adaptive radiation within an entire biological system – in this case the adaptive radiation of cichlid fishes in Lake Tanganyika."
Max ERC Funding
1 999 238 €
Duration
Start date: 2014-03-01, End date: 2019-02-28