Project acronym AgeConsolidate
Project The Missing Link of Episodic Memory Decline in Aging: The Role of Inefficient Systems Consolidation
Researcher (PI) Anders Martin FJELL
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Summary
Which brain mechanisms are responsible for the faith of the memories we make with age, whether they wither or stay, and in what form? Episodic memory function does decline with age. While this decline can have multiple causes, research has focused almost entirely on encoding and retrieval processes, largely ignoring a third critical process– consolidation. The objective of AgeConsolidate is to provide this missing link, by combining novel experimental cognitive paradigms with neuroimaging in a longitudinal large-scale attempt to directly test how age-related changes in consolidation processes in the brain impact episodic memory decline. The ambitious aims of the present proposal are two-fold:
(1) Use recent advances in memory consolidation theory to achieve an elaborate model of episodic memory deficits in aging
(2) Use aging as a model to uncover how structural and functional brain changes affect episodic memory consolidation in general
The novelty of the project lies in the synthesis of recent methodological advances and theoretical models for episodic memory consolidation to explain age-related decline, by employing a unique combination of a range of different techniques and approaches. This is ground-breaking, in that it aims at taking our understanding of the brain processes underlying episodic memory decline in aging to a new level, while at the same time advancing our theoretical understanding of how episodic memories are consolidated in the human brain. To obtain this outcome, I will test the main hypothesis of the project: Brain processes of episodic memory consolidation are less effective in older adults, and this can account for a significant portion of the episodic memory decline in aging. This will be answered by six secondary hypotheses, with 1-3 experiments or tasks designated to address each hypothesis, focusing on functional and structural MRI, positron emission tomography data and sleep experiments to target consolidation from different angles.
Max ERC Funding
1 999 482 €
Duration
Start date: 2017-05-01, End date: 2022-04-30
Project acronym BRAINMINT
Project Brains and minds in transition: The dark side of neuroplasticity during sensitive life phases
Researcher (PI) Lars T. WESTLYE
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH4, ERC-2018-STG
Summary The potential and boundaries of the human mind is determined by dynamic interactions between the environment and the individual genetic architecture. However, despite several breakthroughs, the genetic revolution has not provided a coherent account of the development of the mind and its disorders, and the missing heritability is large across human traits. One explanation of this impasse is the complexity of the gene-environment interactions. Current knowledge about the determinants of a healthy mind is largely based on studies whose modus operandi is to treat the environment as a static entity, neglecting to consider the crucial fact that environmental inputs and their genetic interactions vary dramatically between life phases.
The objective of BRAINMINT is to provide this missing link by zeroing in on two major life transitions, namely adolescence and pregnancy. These phases are characterized by temporarily increased brain plasticity, offering windows for adaptation and growth, but also host the emergence of common mental disorders. I propose that a multi-level investigation with this dark side of brain plasticity as the axis mundi will add a mechanistic understanding of this link between growth and vulnerability. I will test the main hypothesis that mechanisms that boost neuroplasticity promote adaptation to a dynamic environment, but at the cost of increased risk of psychopathology if exposed to a combination of genetic and environmental triggers. To this end I will utilize cutting-edge longitudinal brain imaging, electrophysiology, rich cognitive and clinical data, immune markers, gene expression and genetics. I will leverage on massive imaging data (n>40,000) and novel tools to increase power and generalizability and improve brain- and gene-based predictions of complex traits. Aiming to help resolving one of the modern day enigmas, BRAINMINT is a pioneering and high risk/high gain effort to find mechanisms of brain plasticity that support and harm the brain.
Summary
The potential and boundaries of the human mind is determined by dynamic interactions between the environment and the individual genetic architecture. However, despite several breakthroughs, the genetic revolution has not provided a coherent account of the development of the mind and its disorders, and the missing heritability is large across human traits. One explanation of this impasse is the complexity of the gene-environment interactions. Current knowledge about the determinants of a healthy mind is largely based on studies whose modus operandi is to treat the environment as a static entity, neglecting to consider the crucial fact that environmental inputs and their genetic interactions vary dramatically between life phases.
The objective of BRAINMINT is to provide this missing link by zeroing in on two major life transitions, namely adolescence and pregnancy. These phases are characterized by temporarily increased brain plasticity, offering windows for adaptation and growth, but also host the emergence of common mental disorders. I propose that a multi-level investigation with this dark side of brain plasticity as the axis mundi will add a mechanistic understanding of this link between growth and vulnerability. I will test the main hypothesis that mechanisms that boost neuroplasticity promote adaptation to a dynamic environment, but at the cost of increased risk of psychopathology if exposed to a combination of genetic and environmental triggers. To this end I will utilize cutting-edge longitudinal brain imaging, electrophysiology, rich cognitive and clinical data, immune markers, gene expression and genetics. I will leverage on massive imaging data (n>40,000) and novel tools to increase power and generalizability and improve brain- and gene-based predictions of complex traits. Aiming to help resolving one of the modern day enigmas, BRAINMINT is a pioneering and high risk/high gain effort to find mechanisms of brain plasticity that support and harm the brain.
Max ERC Funding
1 446 113 €
Duration
Start date: 2019-08-01, End date: 2024-07-31
Project acronym CONSTRUCTIVEMEM
Project Emergence and decline of constructive memory – Life-span changes in a common brain network for imagination and episodic memory
Researcher (PI) Anders Martin Fjell
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), SH4, ERC-2011-StG_20101124
Summary The creation of personal, episodic memory from a previous experience is a remarkably complex process, which substantially differs from the processes leading to non-personal knowledge and memory about the world, so-called semantic memory. The act of remembering an episodic event is as much an act of creation as an act of reproduction. Modality-specific memory items are assembled through a re-construction process that allows us to re-experience the episode in rich details. Recent research has shown that recall of episodes and imagination of the future depends on a common core brain network. Early damage to this network will dramatically affect the development of personal memories, effectively preventing the creation of a vivid personal past, while leaving general cognitive development relatively intact. Still, no attempts have been made to study how development and subsequent aging of constructive memory, the arguably most relevant form of memory for daily life-function, is determined by structural and functional properties of the brain. I propose to study how characteristics of the brain determine the development of the ability to form episodic memories in childhood, and how the same factors contribute to the decline in episodic memory function experienced by most healthy elderly. The aim of the current proposal is to understand how maturation and aging of the brain networks for reconstructive memory impacts the ability to form and re-experience ones past. To address this aim, we will study children (4-10 years), adolescents (11-19 years), young adults (20-30 years) and elderly (60-80 years), 100 participants in each group, with repeated cognitive testing and brain scanning with magnetic resonance imaging (MRI). The children will be examined annually, yielding four examinations, while the other participants will be examined bi-annually, yielding to examinations within the project period.
Summary
The creation of personal, episodic memory from a previous experience is a remarkably complex process, which substantially differs from the processes leading to non-personal knowledge and memory about the world, so-called semantic memory. The act of remembering an episodic event is as much an act of creation as an act of reproduction. Modality-specific memory items are assembled through a re-construction process that allows us to re-experience the episode in rich details. Recent research has shown that recall of episodes and imagination of the future depends on a common core brain network. Early damage to this network will dramatically affect the development of personal memories, effectively preventing the creation of a vivid personal past, while leaving general cognitive development relatively intact. Still, no attempts have been made to study how development and subsequent aging of constructive memory, the arguably most relevant form of memory for daily life-function, is determined by structural and functional properties of the brain. I propose to study how characteristics of the brain determine the development of the ability to form episodic memories in childhood, and how the same factors contribute to the decline in episodic memory function experienced by most healthy elderly. The aim of the current proposal is to understand how maturation and aging of the brain networks for reconstructive memory impacts the ability to form and re-experience ones past. To address this aim, we will study children (4-10 years), adolescents (11-19 years), young adults (20-30 years) and elderly (60-80 years), 100 participants in each group, with repeated cognitive testing and brain scanning with magnetic resonance imaging (MRI). The children will be examined annually, yielding four examinations, while the other participants will be examined bi-annually, yielding to examinations within the project period.
Max ERC Funding
1 499 088 €
Duration
Start date: 2012-02-01, End date: 2017-01-31
Project acronym ContentMAP
Project Contentotopic mapping: the topographical organization of object knowledge in the brain
Researcher (PI) Jorge ALMEIDA
Host Institution (HI) UNIVERSIDADE DE COIMBRA
Call Details Starting Grant (StG), SH4, ERC-2018-STG
Summary Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. In ContentMAP I will put forth a novel understanding of how object knowledge is organized in the brain, by proposing that this knowledge is topographically laid out in the cortical surface according to object-related dimensions that code for different types of representational content – I will call this contentotopic mapping. To study this fine-grain topography, I will use a combination of fMRI, behavioral, and neuromodulation approaches. I will first obtain patterns of neural and cognitive similarity between objects, and from these extract object-related dimensions using a dimensionality reduction technique. I will then parametrically manipulate these dimensions with an innovative use of a visual field mapping technique, and test how functional selectivity changes across the cortical surface according to an object’s score on a target dimension. Moreover, I will test the tuning function of these contentotopic maps. Finally, to mirror the complexity of implementing a high-dimensional manifold onto a 2D cortical sheet, I will aggregate the topographies for the different dimensions into a composite map, and develop an encoding model to predict neural signatures for each object. To sum up, ContentMAP will have a dramatic impact in the cognitive sciences by describing how the stuff of concepts is represented in the brain, and providing a complete description of how fine-grain representations and functional selectivity within high-level complex processes are topographically implemented.
Summary
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. In ContentMAP I will put forth a novel understanding of how object knowledge is organized in the brain, by proposing that this knowledge is topographically laid out in the cortical surface according to object-related dimensions that code for different types of representational content – I will call this contentotopic mapping. To study this fine-grain topography, I will use a combination of fMRI, behavioral, and neuromodulation approaches. I will first obtain patterns of neural and cognitive similarity between objects, and from these extract object-related dimensions using a dimensionality reduction technique. I will then parametrically manipulate these dimensions with an innovative use of a visual field mapping technique, and test how functional selectivity changes across the cortical surface according to an object’s score on a target dimension. Moreover, I will test the tuning function of these contentotopic maps. Finally, to mirror the complexity of implementing a high-dimensional manifold onto a 2D cortical sheet, I will aggregate the topographies for the different dimensions into a composite map, and develop an encoding model to predict neural signatures for each object. To sum up, ContentMAP will have a dramatic impact in the cognitive sciences by describing how the stuff of concepts is represented in the brain, and providing a complete description of how fine-grain representations and functional selectivity within high-level complex processes are topographically implemented.
Max ERC Funding
1 816 004 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym DISCRETION
Project Discretion and the child´s best interests in child protection
Researcher (PI) Marit Sissel Irene SKIVENES
Host Institution (HI) UNIVERSITETET I BERGEN
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary DISCRETION aims to unlock the black box of discretionary decision-making in child protection cases by a comparative-empirical study of how discretionary decisions are made and justified in the best interests of the child. There are huge research gaps in this important area of the welfare state, with a great deal of uncertainty concerning how, when and why discretionary decisions about the child´s best interests are different between decision-makers within and between child protection systems.
The main objectives for this project are to reveal the mechanisms for exercising discretion, and improve the understanding of the principle of the child´s best interests.
These objectives will be reached by systematically examining the role of institutional, organisational and individual factors including regulations of best interest principles; professions involved; type of courts; type of child protection system; demographic factors and individual values; and the populations’ view on children and paternalism. DISCRETION employs an innovative methodological approach, with multilevel and cross-country studies.
DISCRETION will, by conducting the largest cross-national study on decision-making in child protection to date, lift our understanding of international differences in child protection to a new level. By conducting randomized survey experiments with both decision-makers in the system and the general population, DISCRETION generates unique data on the causal mechanisms explaining differences in discretionary decisions.
The outcomes of DISCRETION are important because societies are at a crossroad when it comes to how children are treated and how their rights are respected, which creates tensions in the traditional relationship between the family and the state. DISCRETION will move beyond the field of child protection and provide important insights into the exercise of discretion in all areas where the public interest as well as national interest must be interpreted.
Summary
DISCRETION aims to unlock the black box of discretionary decision-making in child protection cases by a comparative-empirical study of how discretionary decisions are made and justified in the best interests of the child. There are huge research gaps in this important area of the welfare state, with a great deal of uncertainty concerning how, when and why discretionary decisions about the child´s best interests are different between decision-makers within and between child protection systems.
The main objectives for this project are to reveal the mechanisms for exercising discretion, and improve the understanding of the principle of the child´s best interests.
These objectives will be reached by systematically examining the role of institutional, organisational and individual factors including regulations of best interest principles; professions involved; type of courts; type of child protection system; demographic factors and individual values; and the populations’ view on children and paternalism. DISCRETION employs an innovative methodological approach, with multilevel and cross-country studies.
DISCRETION will, by conducting the largest cross-national study on decision-making in child protection to date, lift our understanding of international differences in child protection to a new level. By conducting randomized survey experiments with both decision-makers in the system and the general population, DISCRETION generates unique data on the causal mechanisms explaining differences in discretionary decisions.
The outcomes of DISCRETION are important because societies are at a crossroad when it comes to how children are treated and how their rights are respected, which creates tensions in the traditional relationship between the family and the state. DISCRETION will move beyond the field of child protection and provide important insights into the exercise of discretion in all areas where the public interest as well as national interest must be interpreted.
Max ERC Funding
1 997 918 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym EPIFISH
Project INNOVATIVE EPIGENETIC MARKERS FOR FISH DOMESTICATION
Researcher (PI) Jorge Manuel De Oliveira Fernandes
Host Institution (HI) NORD UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2015-CoG
Summary Aquaculture is the fastest growing food production sector in the world, since there is an increasing demand for fish protein to feed a growing global population, which cannot be met by fisheries. In order to ensure the sustainability of this sector it is critical to domesticate and selectively improve the major commercial fish species. To date, the genetic markers used in selective breeding of fish account only for a fraction of the observed phenotypic variation. EPIFISH is a scientifically innovative and timely project that will address fish domestication and selection from a new perspective using a multidisciplinary approach. The rapid pace of substantial phenotypic changes during adaptation to new environmental conditions in fish undergoing domestication raises the original hypothesis that epigenetic mechanisms are involved in this process. Thus, the overarching aim of EPIFISH is to ascertain the importance of epigenetics in fish domestication using the Nile tilapia (Oreochromis niloticus) as model species. Specific objectives are i) to determine how selection affects the miRNA transcriptome and the epigenetic landscape during domestication, ii) to perform a functional characterization of miRNA variants and epigenetic alleles associated with growth, and iii) to validate them as potential epigenetic markers for future selective breeding programmes. The identification of epigenetic markers will be a ground-breaking element of EPIFISH with major impact on aquaculture biotechnology, since they will enable the development and application of epigenomic selection as a new feature in future selective breeding programmes. Moreover, the project outcomes will provide novel mechanistic insights into the role of epigenetics in fish domestication, which will surely open new horizons for future frontier research in epigenetics, namely transgenerational inheritance and nutritional epigenetics.
Summary
Aquaculture is the fastest growing food production sector in the world, since there is an increasing demand for fish protein to feed a growing global population, which cannot be met by fisheries. In order to ensure the sustainability of this sector it is critical to domesticate and selectively improve the major commercial fish species. To date, the genetic markers used in selective breeding of fish account only for a fraction of the observed phenotypic variation. EPIFISH is a scientifically innovative and timely project that will address fish domestication and selection from a new perspective using a multidisciplinary approach. The rapid pace of substantial phenotypic changes during adaptation to new environmental conditions in fish undergoing domestication raises the original hypothesis that epigenetic mechanisms are involved in this process. Thus, the overarching aim of EPIFISH is to ascertain the importance of epigenetics in fish domestication using the Nile tilapia (Oreochromis niloticus) as model species. Specific objectives are i) to determine how selection affects the miRNA transcriptome and the epigenetic landscape during domestication, ii) to perform a functional characterization of miRNA variants and epigenetic alleles associated with growth, and iii) to validate them as potential epigenetic markers for future selective breeding programmes. The identification of epigenetic markers will be a ground-breaking element of EPIFISH with major impact on aquaculture biotechnology, since they will enable the development and application of epigenomic selection as a new feature in future selective breeding programmes. Moreover, the project outcomes will provide novel mechanistic insights into the role of epigenetics in fish domestication, which will surely open new horizons for future frontier research in epigenetics, namely transgenerational inheritance and nutritional epigenetics.
Max ERC Funding
1 996 189 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym EQOP
Project Socioeconomic gaps in language development and school achievement: Mechanisms of inequality and opportunity
Researcher (PI) Henrik ZACHRISSON
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary As inequality increases in most developed countries, children from socioeconomically disadvantaged families are at exceptional risk for academic underachievement with lasting consequences for individuals, their communities, and society at large. Among policy makes, early childhood education and care (ECEC) is considered a key to remedy this risk. Yet the science on ECEC effectiveness at a national scale lags behind the excitement.
Exploiting unique Norwegian data, we first seek to identify how and why socioeconomic disadvantage undermines children’s language skills and school achievement. Second, we will investigate whether ECEC can improve opportunities for disadvantaged children to excel. Third, to clarify the policy relevance of these inquiries, we will estimate costs of socioeconomic achievement gaps and the economic benefits of ECEC at scale. We take an investigative approach that is unprecedented in scope—from population level trends down to nuanced assessments of individual children’s growth.
Throughout the 2000s, Norway’s child poverty rates increased from about 4% to 10%, while the coverage of public ECEC for toddlers increased from 30% to 80%. Across this unique window of time, we have access to rich survey data on language skills and home environment for 100,000 children, and genetically informative data, linked with administrative records on community- and family level socioeconomic risks and opportunities, and on national achievement test scores. These data allow us powerful analytic opportunities, combining state-of-the-art statistical, econometric, psychometric, and genetic epidemiological methods.
I am well positioned to lead this project, having qualified for a Professorship at the University of Oslo aged 36, and having considerable experience in (a) publishing in highly respected scientific journals, (b) working at the intersection of research and policy, (c) leading research projects, and (d) mentoring younger scholars.
Summary
As inequality increases in most developed countries, children from socioeconomically disadvantaged families are at exceptional risk for academic underachievement with lasting consequences for individuals, their communities, and society at large. Among policy makes, early childhood education and care (ECEC) is considered a key to remedy this risk. Yet the science on ECEC effectiveness at a national scale lags behind the excitement.
Exploiting unique Norwegian data, we first seek to identify how and why socioeconomic disadvantage undermines children’s language skills and school achievement. Second, we will investigate whether ECEC can improve opportunities for disadvantaged children to excel. Third, to clarify the policy relevance of these inquiries, we will estimate costs of socioeconomic achievement gaps and the economic benefits of ECEC at scale. We take an investigative approach that is unprecedented in scope—from population level trends down to nuanced assessments of individual children’s growth.
Throughout the 2000s, Norway’s child poverty rates increased from about 4% to 10%, while the coverage of public ECEC for toddlers increased from 30% to 80%. Across this unique window of time, we have access to rich survey data on language skills and home environment for 100,000 children, and genetically informative data, linked with administrative records on community- and family level socioeconomic risks and opportunities, and on national achievement test scores. These data allow us powerful analytic opportunities, combining state-of-the-art statistical, econometric, psychometric, and genetic epidemiological methods.
I am well positioned to lead this project, having qualified for a Professorship at the University of Oslo aged 36, and having considerable experience in (a) publishing in highly respected scientific journals, (b) working at the intersection of research and policy, (c) leading research projects, and (d) mentoring younger scholars.
Max ERC Funding
1 907 959 €
Duration
Start date: 2019-06-01, End date: 2024-05-31
Project acronym FEEC-A
Project Finite Element Exterior Calculus and Applications
Researcher (PI) Ragnar Winther
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Advanced Grant (AdG), PE1, ERC-2013-ADG
Summary "The finite element method is one of the most successful techniques for designing numerical methods for systems of partial differential equations (PDEs). It is not only a methodology for developing numerical algorithms, but also a mathematical framework in which to explore their behavior. The finite element exterior calculus (FEEC) provides a new structure that produces a deeper understanding of the finite element method and its connections to the partial differential equation being approximated. The goal is to develop discretizations which are compatible with the geometric, topological, and algebraic structures which underlie well-posedness of the partial differential equation. The phrase FEEC was first used in a paper the PI wrote for Acta Numerica in 2006, together with his coworkers, D.N. Arnold and R.S. Falk. The general philosophy of FEEC has led to the design of new algorithms and software developments, also in areas beyond the direct application of the theory. The present project will be devoted to further development of the foundations of FEEC, and to direct or indirect use of FEEC in specific applications. The ambition is to set the scene for a nubmer of new research directions based on FEEC by giving ground-braking contributions to its foundation. The aim is also to use FEEC as a tool, or a guideline, to extend the foundation of numerical PDEs to a variety of problems for which this foundation does not exist. The more application oriented parts of the project includes topics like numerical methods for elasticity, its generalizations to more general models in materials science such as viscoelasticity, poroelasticity, and liquid crystals, and the applications of these models to CO2 storage and deformations of the spinal cord."
Summary
"The finite element method is one of the most successful techniques for designing numerical methods for systems of partial differential equations (PDEs). It is not only a methodology for developing numerical algorithms, but also a mathematical framework in which to explore their behavior. The finite element exterior calculus (FEEC) provides a new structure that produces a deeper understanding of the finite element method and its connections to the partial differential equation being approximated. The goal is to develop discretizations which are compatible with the geometric, topological, and algebraic structures which underlie well-posedness of the partial differential equation. The phrase FEEC was first used in a paper the PI wrote for Acta Numerica in 2006, together with his coworkers, D.N. Arnold and R.S. Falk. The general philosophy of FEEC has led to the design of new algorithms and software developments, also in areas beyond the direct application of the theory. The present project will be devoted to further development of the foundations of FEEC, and to direct or indirect use of FEEC in specific applications. The ambition is to set the scene for a nubmer of new research directions based on FEEC by giving ground-braking contributions to its foundation. The aim is also to use FEEC as a tool, or a guideline, to extend the foundation of numerical PDEs to a variety of problems for which this foundation does not exist. The more application oriented parts of the project includes topics like numerical methods for elasticity, its generalizations to more general models in materials science such as viscoelasticity, poroelasticity, and liquid crystals, and the applications of these models to CO2 storage and deformations of the spinal cord."
Max ERC Funding
2 059 687 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym FUMI
Project Future Migration as Present Fact
Researcher (PI) Jørgen Koren CARLING
Host Institution (HI) INSTITUTT FOR FREDSFORSKNING STIFTELSE
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary The springboard for this project is a striking statistic: half of all young adults in West Africa wish to leave their own country and settle elsewhere. Yet, the vast majority never depart. This discrep-ancy raises a fundamental question: if migration is desired, but never materializes, what are the consequences? The project breaks with traditional approaches by shifting the object of study from observed migration in the present to imagined migration in the future. Although such future migration might never occur, it materializes in thoughts, feelings, communication, and behaviour at present. Young people’s priorities are informed by the futures they imagine, and their lives can thus be formed by migration that is imagined but never achieved. Framing the issue in this way renews research on the precursors of migration and opens up a new chapter about the links be-tween migration and development. The project is guided by a bold central hypothesis: Migration that is imagined, yet never takes place, decisively shapes the lives of individuals and the devel-opment of societies. This hypothesis is addressed through a research design that weaves together three streams: theory development, ethnographic fieldwork, and sample surveys. Drawing upon the PI’s proven qualifications in all three fields, the project aims for deep mixed-methods integra-tion. The project’s empirical focus is West Africa. Migration desires are particularly widespread in this region, and internal socio-economic variation can be exploited for theoretical purposes. By investing in theoretical and methodological development, attuned to a poorly understood aspect of global migration challenges, the project holds the promise of sustained impacts on migration research. The project is set within interdisciplinary migration studies, anchored in human geogra-phy and supported by related disciplines including anthropology, economics, and sociology.
Summary
The springboard for this project is a striking statistic: half of all young adults in West Africa wish to leave their own country and settle elsewhere. Yet, the vast majority never depart. This discrep-ancy raises a fundamental question: if migration is desired, but never materializes, what are the consequences? The project breaks with traditional approaches by shifting the object of study from observed migration in the present to imagined migration in the future. Although such future migration might never occur, it materializes in thoughts, feelings, communication, and behaviour at present. Young people’s priorities are informed by the futures they imagine, and their lives can thus be formed by migration that is imagined but never achieved. Framing the issue in this way renews research on the precursors of migration and opens up a new chapter about the links be-tween migration and development. The project is guided by a bold central hypothesis: Migration that is imagined, yet never takes place, decisively shapes the lives of individuals and the devel-opment of societies. This hypothesis is addressed through a research design that weaves together three streams: theory development, ethnographic fieldwork, and sample surveys. Drawing upon the PI’s proven qualifications in all three fields, the project aims for deep mixed-methods integra-tion. The project’s empirical focus is West Africa. Migration desires are particularly widespread in this region, and internal socio-economic variation can be exploited for theoretical purposes. By investing in theoretical and methodological development, attuned to a poorly understood aspect of global migration challenges, the project holds the promise of sustained impacts on migration research. The project is set within interdisciplinary migration studies, anchored in human geogra-phy and supported by related disciplines including anthropology, economics, and sociology.
Max ERC Funding
1 999 672 €
Duration
Start date: 2019-07-01, End date: 2024-06-30
Project acronym GEOCOG
Project Cognitive Geometry: Deciphering neural concept spaces and engineering knowledge to empower smart brains in a smart society
Researcher (PI) Christian Fritz Andreas DOELLER
Host Institution (HI) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Call Details Consolidator Grant (CoG), SH4, ERC-2016-COG
Summary Through smart technology, we are overwhelmed with new information. Does this unlimited access to knowledge make us smarter? One of the key challenges for modern societies is to understand how the brain assembles our rich inventory of knowledge. Here, I will test the hypothesis that newly acquired knowledge is represented in the hippocampal formation in neural concept spaces, which are based on the coding principles and representational structures of the neural machinery involved in spatial navigation. The key idea is that the brain’s navigation system provides the building blocks of a neural metric for knowledge. In this groundbreaking cognitive neuroscience framework, I will bridge and integrate principles from Nobel Prize awarded neurophysiology and concepts from cognitive science and philosophy. Partly building on my ERC-StG project in which I discovered the core neural mechanisms underlying reconfiguration, integration and scaling of memory networks, the aim of my proposal is two-fold: 1. I seek to decipher neural concept spaces and unravel the neural codes of a cognitive geometry for knowledge and its deformations. 2. I will provide a proof-of-principle framework for next-generation neurocognitive technology and neural user models for cognitive enhancement to edit memories and engineer knowledge. Novel ‘Wikipedia’ learning tasks will be combined with state-of-the-art pattern analyses of space-resolved fMRI and time-resolved MEG to map and quantify representational structures. I will further develop AI-inspired analyses and closed loop brain-computer interfaces to perturb and edit neural concept space. The integrative mission of my program, from cells to systems-level involvement in cognition and to technology, opens up the exciting possibility to lay the ground for redefining cognitive neuroscience of knowledge by unravelling the fundamental neural principles of a cognitive topography and to make critical translations to empower smart brains in a smart society.
Summary
Through smart technology, we are overwhelmed with new information. Does this unlimited access to knowledge make us smarter? One of the key challenges for modern societies is to understand how the brain assembles our rich inventory of knowledge. Here, I will test the hypothesis that newly acquired knowledge is represented in the hippocampal formation in neural concept spaces, which are based on the coding principles and representational structures of the neural machinery involved in spatial navigation. The key idea is that the brain’s navigation system provides the building blocks of a neural metric for knowledge. In this groundbreaking cognitive neuroscience framework, I will bridge and integrate principles from Nobel Prize awarded neurophysiology and concepts from cognitive science and philosophy. Partly building on my ERC-StG project in which I discovered the core neural mechanisms underlying reconfiguration, integration and scaling of memory networks, the aim of my proposal is two-fold: 1. I seek to decipher neural concept spaces and unravel the neural codes of a cognitive geometry for knowledge and its deformations. 2. I will provide a proof-of-principle framework for next-generation neurocognitive technology and neural user models for cognitive enhancement to edit memories and engineer knowledge. Novel ‘Wikipedia’ learning tasks will be combined with state-of-the-art pattern analyses of space-resolved fMRI and time-resolved MEG to map and quantify representational structures. I will further develop AI-inspired analyses and closed loop brain-computer interfaces to perturb and edit neural concept space. The integrative mission of my program, from cells to systems-level involvement in cognition and to technology, opens up the exciting possibility to lay the ground for redefining cognitive neuroscience of knowledge by unravelling the fundamental neural principles of a cognitive topography and to make critical translations to empower smart brains in a smart society.
Max ERC Funding
2 000 000 €
Duration
Start date: 2017-05-01, End date: 2022-04-30