Project acronym 3D-PXM
Project 3D Piezoresponse X-ray Microscopy
Researcher (PI) Hugh SIMONS
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), PE3, ERC-2018-STG
Summary Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Summary
Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk.
This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage.
For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.
Max ERC Funding
1 496 941 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym aCROBAT
Project Circadian Regulation Of Brown Adipose Thermogenesis
Researcher (PI) Zachary Philip Gerhart-Hines
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), LS4, ERC-2014-STG
Summary Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Summary
Obesity and diabetes have reached pandemic proportions and new therapeutic strategies are critically needed. Brown adipose tissue (BAT), a major source of heat production, possesses significant energy-dissipating capacity and therefore represents a promising target to use in combating these diseases. Recently, I discovered a novel link between circadian rhythm and thermogenic stress in the control of the conserved, calorie-burning functions of BAT. Circadian and thermogenic signaling to BAT incorporates blood-borne hormonal and nutrient cues with direct neuronal input. Yet how these responses coordinately shape BAT energy-expending potential through the regulation of cell surface receptors, metabolic enzymes, and transcriptional effectors is still not understood. My primary goal is to investigate this previously unappreciated network of crosstalk that allows mammals to effectively orchestrate daily rhythms in BAT metabolism, while maintaining their ability to adapt to abrupt changes in energy demand. My group will address this question using gain and loss-of-function in vitro and in vivo studies, newly-generated mouse models, customized physiological phenotyping, and cutting-edge advances in next generation RNA sequencing and mass spectrometry. Preliminary, small-scale validations of our methodologies have already yielded a number of novel candidates that may drive key facets of BAT metabolism. Additionally, we will extend our circadian and thermogenic studies into humans to evaluate the translational potential. Our results will advance the fundamental understanding of how daily oscillations in bioenergetic networks establish a framework for the anticipation of and adaptation to environmental challenges. Importantly, we expect that these mechanistic insights will reveal pharmacological targets through which we can unlock evolutionary constraints and harness the energy-expending potential of BAT for the prevention and treatment of obesity and diabetes.
Max ERC Funding
1 497 008 €
Duration
Start date: 2015-05-01, End date: 2020-04-30
Project acronym AEROSOL
Project Astrochemistry of old stars:direct probing of unique chemical laboratories
Researcher (PI) Leen Katrien Els Decin
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Call Details Consolidator Grant (CoG), PE9, ERC-2014-CoG
Summary The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Summary
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.
Max ERC Funding
2 605 897 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym AlgoFinance
Project Algorithmic Finance: Inquiring into the Reshaping of Financial Markets
Researcher (PI) Christian BORCH
Host Institution (HI) COPENHAGEN BUSINESS SCHOOL
Call Details Consolidator Grant (CoG), SH3, ERC-2016-COG
Summary Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Summary
Present-day financial markets are turning algorithmic, as market orders are increasingly being executed by fully automated computer algorithms, without any direct human intervention. Although algorithmic finance seems to fundamentally reshape the central dynamics in financial markets, and even though it prompts core sociological questions, it has not yet received any systematic attention. In a pioneering contribution to economic sociology and social studies of finance, ALGOFINANCE aims to understand how and with what consequences the turn to algorithms is changing financial markets. The overall concept and central contributions of ALGOFINANCE are the following: (1) on an intra-firm level, the project examines how the shift to algorithmic finance reshapes the ways in which trading firms operate, and does so by systematically and empirically investigating the reconfiguration of organizational structures and employee subjectivity; (2) on an inter-algorithmic level, it offers a ground-breaking methodology (agent-based modelling informed by qualitative data) to grasp how trading algorithms interact with one another in a fully digital space; and (3) on the level of market sociality, it proposes a novel theorization of how intra-firm and inter-algorithmic dynamics can be conceived of as introducing a particular form of sociality that is characteristic to algorithmic finance: a form of sociality-as-association heuristically analyzed as imitation. None of these three levels have received systematic attention in the state-of-the-art literature. Addressing them will significantly advance the understanding of present-day algorithmic finance in economic sociology. By contributing novel empirical, methodological, and theoretical understandings of the functioning and consequences of algorithms, ALGOFINANCE will pave the way for other research into digital sociology and the broader algorithmization of society.
Max ERC Funding
1 590 036 €
Duration
Start date: 2017-05-01, End date: 2021-04-30
Project acronym ALUFIX
Project Friction stir processing based local damage mitigation and healing in aluminium alloys
Researcher (PI) Aude SIMAR
Host Institution (HI) UNIVERSITE CATHOLIQUE DE LOUVAIN
Call Details Starting Grant (StG), PE8, ERC-2016-STG
Summary ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Summary
ALUFIX proposes an original strategy for the development of aluminium-based materials involving damage mitigation and extrinsic self-healing concepts exploiting the new opportunities of the solid-state friction stir process. Friction stir processing locally extrudes and drags material from the front to the back and around the tool pin. It involves short duration at moderate temperatures (typically 80% of the melting temperature), fast cooling rates and large plastic deformations leading to far out-of-equilibrium microstructures. The idea is that commercial aluminium alloys can be locally improved and healed in regions of stress concentration where damage is likely to occur. Self-healing in metal-based materials is still in its infancy and existing strategies can hardly be extended to applications. Friction stir processing can enhance the damage and fatigue resistance of aluminium alloys by microstructure homogenisation and refinement. In parallel, friction stir processing can be used to integrate secondary phases in an aluminium matrix. In the ALUFIX project, healing phases will thus be integrated in aluminium in addition to refining and homogenising the microstructure. The “local stress management strategy” favours crack closure and crack deviation at the sub-millimetre scale thanks to a controlled residual stress field. The “transient liquid healing agent” strategy involves the in-situ generation of an out-of-equilibrium compositionally graded microstructure at the aluminium/healing agent interface capable of liquid-phase healing after a thermal treatment. Along the road, a variety of new scientific questions concerning the damage mechanisms will have to be addressed.
Max ERC Funding
1 497 447 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym APOLs
Project Role of Apolipoproteins L in immunity and disease
Researcher (PI) Etienne Pays
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Advanced Grant (AdG), LS6, ERC-2014-ADG
Summary Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Summary
Work conducted in my laboratory on the trypanosome killing factor of human serum led to the identification
of the primate-specific Apolipoprotein L1 (APOL1) as a novel pore-forming protein with striking similarities
with proteins of the apoptotic BCL2 family. APOL1 belongs to a family of proteins induced under
inflammatory conditions in myeloid and endothelial cells. APOL1 is efficiently neutralized by the SRA
protein of Trypanosoma rhodesiense, accounting for the ability of this trypanosome subspecies to infect
humans and cause sleeping sickness. We found that natural APOL1 variants escaping SRA neutralization and
therefore conferring human resistance to T. rhodesiense are associated with chronic kidney disease.
Moreover, transgenic mice expressing these APOL1 variants exhibit an obese phenotype. Our unpublished
results also indicate that APOLs control the lifespan of dendritic cells and podocytes activated by viral
stimuli. Therefore, we propose that the pathology of APOL variants is due to their deregulated activity on the
control of the cellular lifespan in myeloid/endothelial cells activated by pathogen detection.
This project aims at characterizing (i) the molecular mechanism by which APOLs control the lifespan of
activated dendritic cells and podocytes, which has direct impact on innate immunity and inflammation, and
(ii) the mechanism by which APOL1 variants cause pathology. In addition, we plan to detail the
physiological function of APOLs by studying the phenotype of transgenic mice either expressing human
APOL1 (wild-type and variants) or devoid of APOL genes, which we have recently generated. Finally, we
propose to exploit the extraordinary potential of trypanosomes for antigenic variation in order to produce
SRA variants able to neutralize the pathogenic APOL1 variants. Preliminary experiments suggest that in
podocytes SRA antagonizes APOL1 induction by viral stimulus and subsequent cell death, opening new
perspectives to treat kidney disease.
Max ERC Funding
2 250 000 €
Duration
Start date: 2015-09-01, End date: 2020-08-31
Project acronym ArtHep
Project Hepatocytes-Like Microreactors for Liver Tissue Engineering
Researcher (PI) Brigitte STADLER
Host Institution (HI) AARHUS UNIVERSITET
Call Details Consolidator Grant (CoG), LS9, ERC-2018-COG
Summary The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Summary
The global epidemics of obesity and diabetes type 2 lead to higher abundancy of medical conditions like non-alcoholic fatty liver disease causing an increase in liver failure and demand for liver transplants. The shortage of donor organs and the insufficient success in tissue engineering to ex vivo grow complex organs like the liver is a global medical challenge.
ArtHep targets the assembly of hepatic-like tissue, consisting of biological and synthetic entities, mimicking the core structure elements and key functions of the liver. ArtHep comprises an entirely new concept in liver regeneration with multi-angled core impact: i) cell mimics are expected to reduce the pressure to obtain donor cells, ii) the integrated biocatalytic subunits are destined to take over tasks of the damaged liver slowing down the progress of liver damage, and iii) the matching micro-environment in the bioprinted tissue is anticipated to facilitate the connection between the transplant and the liver.
Success criteria of ArtHep include engineering enzyme-mimics, which can perform core biocatalytic conversions similar to the liver, the assembly of biocatalytic active subunits and their encapsulation in cell-like carriers (microreactors), which have mechanical properties that match the liver tissue and that have a camouflaging coating to mimic the surface cues of liver tissue-relevant cells. Finally, matured bioprinted liver-lobules consisting of microreactors and live cells need to connect to liver tissue when transplanted into rats.
I am convinced that the ground-breaking research in ArtHep will contribute to the excellence of science in Europe while providing the game-changing foundation to counteract the ever increasing donor liver shortage. Further, consolidating my scientific efforts and moving them forward into unexplored dimensions in biomimicry for medical purposes, is a unique opportunity to advance my career.
Max ERC Funding
1 992 289 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym BantuFirst
Project The First Bantu Speakers South of the Rainforest: A Cross-Disciplinary Approach to Human Migration, Language Spread, Climate Change and Early Farming in Late Holocene Central Africa
Researcher (PI) Koen André G. BOSTOEN
Host Institution (HI) UNIVERSITEIT GENT
Call Details Consolidator Grant (CoG), SH6, ERC-2016-COG
Summary The Bantu Expansion is not only the main linguistic, cultural and demographic process in Late Holocene Africa. It is also one of the most controversial issues in African History that still has political repercussions today. It has sparked debate across the disciplines and far beyond Africanist circles in an attempt to understand how the young Bantu language family (ca. 5000 years) could spread over large parts of Central, Eastern and Southern Africa. This massive dispersal is commonly seen as the result of a single migratory macro-event driven by agriculture, but many questions about the movement and subsistence of ancestral Bantu speakers are still open. They can only be answered through real interdisciplinary collaboration. This project will unite researchers with outstanding expertise in African archaeology, archaeobotany and historical linguistics to form a unique cross-disciplinary team that will shed new light on the first Bantu-speaking village communities south of the rainforest. Fieldwork is planned in parts of the Democratic Republic of Congo, the Republic of Congo and Angola that are terra incognita for archaeologists to determine the timing, location and archaeological signature of the earliest villagers and to establish how they interacted with autochthonous hunter-gatherers. Special attention will be paid to archaeobotanical and palaeoenvironmental data to get an idea of their subsistence, diet and habitat. Historical linguistics will be pushed beyond the boundaries of vocabulary-based phylogenetics and open new pathways in lexical reconstruction, especially regarding subsistence and land use of early Bantu speakers. Through interuniversity collaboration archaeozoological, palaeoenvironmental and genetic data and phylogenetic modelling will be brought into the cross-disciplinary approach to acquire a new holistic view on the interconnections between human migration, language spread, climate change and early farming in Late Holocene Central Africa.
Summary
The Bantu Expansion is not only the main linguistic, cultural and demographic process in Late Holocene Africa. It is also one of the most controversial issues in African History that still has political repercussions today. It has sparked debate across the disciplines and far beyond Africanist circles in an attempt to understand how the young Bantu language family (ca. 5000 years) could spread over large parts of Central, Eastern and Southern Africa. This massive dispersal is commonly seen as the result of a single migratory macro-event driven by agriculture, but many questions about the movement and subsistence of ancestral Bantu speakers are still open. They can only be answered through real interdisciplinary collaboration. This project will unite researchers with outstanding expertise in African archaeology, archaeobotany and historical linguistics to form a unique cross-disciplinary team that will shed new light on the first Bantu-speaking village communities south of the rainforest. Fieldwork is planned in parts of the Democratic Republic of Congo, the Republic of Congo and Angola that are terra incognita for archaeologists to determine the timing, location and archaeological signature of the earliest villagers and to establish how they interacted with autochthonous hunter-gatherers. Special attention will be paid to archaeobotanical and palaeoenvironmental data to get an idea of their subsistence, diet and habitat. Historical linguistics will be pushed beyond the boundaries of vocabulary-based phylogenetics and open new pathways in lexical reconstruction, especially regarding subsistence and land use of early Bantu speakers. Through interuniversity collaboration archaeozoological, palaeoenvironmental and genetic data and phylogenetic modelling will be brought into the cross-disciplinary approach to acquire a new holistic view on the interconnections between human migration, language spread, climate change and early farming in Late Holocene Central Africa.
Max ERC Funding
1 997 500 €
Duration
Start date: 2018-01-01, End date: 2022-12-31
Project acronym BANTURIVERS
Project At a Crossroads of Bantu Expansions: Present and Past Riverside Communities in the Congo Basin, from an Integrated Linguistic, Anthropological and Archaeological Perspective
Researcher (PI) Birgit RICQUIER
Host Institution (HI) UNIVERSITE LIBRE DE BRUXELLES
Call Details Starting Grant (StG), SH6, ERC-2018-STG
Summary The “Bantu Expansion”, a research theme within the precolonial history of Central Africa, unites scholars of different disciplines. Much research is focused on the initial expansions of Bantu subgroups, which are explained as farmers ever looking for new lands and therefore avoiding the rainforest, also in the recent research on the “Savannah Corridor”. We want to study a crossroads of different Bantu expansions in the very heart of the Central-African rainforest, namely the eastern part of the Congo Basin (the Congo River and its tributaries up- and downstream of Kisangani until Bumba and Kindu). The region hosts multiple language groups from Bantu and other origin, complex ethnic identities and people practicing complementary subsistence strategies. Considering that farming is complicated in a rainforest environment, we will investigate the role of rivers in the settlement of these speech communities into the area, both as ways into the forest and as abundant source of animal protein (fish).
The project is multidisciplinary and will apply an integrated linguistic, anthropological and archaeological approach to study both present and past riverside communities in the Congo Basin. Historical comparative linguistics will offer insights into the historical relations between speech communities through language classification and the study of language contact, and will study specialized vocabulary to trace the history of river-related techniques, tools and knowledge. Anthropological research involves extensive fieldwork concerning ethnoecology, trade and/or exchange networks, sociocultural aspects of life at the riverside, and ethnohistory. Archaeologists will conduct surveys in the region of focus to provide a chrono-cultural framework.
Summary
The “Bantu Expansion”, a research theme within the precolonial history of Central Africa, unites scholars of different disciplines. Much research is focused on the initial expansions of Bantu subgroups, which are explained as farmers ever looking for new lands and therefore avoiding the rainforest, also in the recent research on the “Savannah Corridor”. We want to study a crossroads of different Bantu expansions in the very heart of the Central-African rainforest, namely the eastern part of the Congo Basin (the Congo River and its tributaries up- and downstream of Kisangani until Bumba and Kindu). The region hosts multiple language groups from Bantu and other origin, complex ethnic identities and people practicing complementary subsistence strategies. Considering that farming is complicated in a rainforest environment, we will investigate the role of rivers in the settlement of these speech communities into the area, both as ways into the forest and as abundant source of animal protein (fish).
The project is multidisciplinary and will apply an integrated linguistic, anthropological and archaeological approach to study both present and past riverside communities in the Congo Basin. Historical comparative linguistics will offer insights into the historical relations between speech communities through language classification and the study of language contact, and will study specialized vocabulary to trace the history of river-related techniques, tools and knowledge. Anthropological research involves extensive fieldwork concerning ethnoecology, trade and/or exchange networks, sociocultural aspects of life at the riverside, and ethnohistory. Archaeologists will conduct surveys in the region of focus to provide a chrono-cultural framework.
Max ERC Funding
1 427 821 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym BAS-SBBT
Project Bacterial Amyloid Secretion: Structural Biology and Biotechnology.
Researcher (PI) Han Karel Remaut
Host Institution (HI) VIB
Call Details Consolidator Grant (CoG), LS1, ERC-2014-CoG
Summary Curli are functional amyloid fibers that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria. Unlike the protein misfolding and aggregation events seen in pathological amyloid diseases such as Alzheimer’s and Parkinson’s disease, curli are the product of a dedicated protein secretion machinery. Curli formation requires a specialised and mechanistically unique transporter in the bacterial outer membrane, as well as two soluble accessory proteins thought to facilitate the safe guidance of the curli subunits across the periplasm and to coordinate their self-assembly at cell surface.
In this interdisciplinary research program we will study the structural and molecular biology of E. coli curli biosynthesis and address the fundamental questions concerning the molecular processes that allow the spatially and temporally controlled transport and deposition of these pro-amyloidogenic polypeptides. We will structurally unravel the secretion machinery, trap and analyse critical secretion intermediates and through in vitro reconstitution, assemble a minimal, self-sufficient peptide transport and fiber assembly system.
The new insights gained will set the stage for targeted interventions in curli -mediated biofilm formation and this research project will develop a new framework to harness the unique properties found in curli structure and biosynthesis for biotechnological applications as in patterned functionalized nanowires and directed, selective peptide carriers.
Summary
Curli are functional amyloid fibers that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria. Unlike the protein misfolding and aggregation events seen in pathological amyloid diseases such as Alzheimer’s and Parkinson’s disease, curli are the product of a dedicated protein secretion machinery. Curli formation requires a specialised and mechanistically unique transporter in the bacterial outer membrane, as well as two soluble accessory proteins thought to facilitate the safe guidance of the curli subunits across the periplasm and to coordinate their self-assembly at cell surface.
In this interdisciplinary research program we will study the structural and molecular biology of E. coli curli biosynthesis and address the fundamental questions concerning the molecular processes that allow the spatially and temporally controlled transport and deposition of these pro-amyloidogenic polypeptides. We will structurally unravel the secretion machinery, trap and analyse critical secretion intermediates and through in vitro reconstitution, assemble a minimal, self-sufficient peptide transport and fiber assembly system.
The new insights gained will set the stage for targeted interventions in curli -mediated biofilm formation and this research project will develop a new framework to harness the unique properties found in curli structure and biosynthesis for biotechnological applications as in patterned functionalized nanowires and directed, selective peptide carriers.
Max ERC Funding
1 989 489 €
Duration
Start date: 2015-06-01, End date: 2020-05-31