Project acronym BIOGEOS
Project Bio-mediated Geo-material Strengthening for engineering applications
Researcher (PI) Lyesse LALOUI
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Advanced Grant (AdG), PE8, ERC-2017-ADG
Summary Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Summary
Given the increasing scarcity of suitable land for development, soil strengthening technologies have emerged in the past decade and go hand-in-hand with the implementation of the majority of foundation solutions. The goal is to alter the soil structure and its mechanical properties for ultimately securing the integrity of structures. The BIOGEOS project puts the focus on bio-mediated soil improvement, which falls within the broader framework of multi-physical processes in geo-mechanics. The goal of the project is to engineer a novel, natural material under controlled processes, for ultimately providing solutions to real problems in the geo-engineering and geo-energy fields by advancing knowledge around complex multi-physical phenomena in porous media. The bio-cemented geo-material, which is produced by carefully integrating the metabolic activity of native soil bacteria, is produced through the bio-mineralization of calcite bonds, which act as natural cementation for endowing the subsurface with real cohesion and increased resistance. A principal characteristic of the project is its multi-scale approach through advanced experimentation to identify the main physical mechanisms involved in the formation of the bio-mineralized bonds and their behaviour under mechanical loading. The development of such a bio-mediated technology will lead to innovative applications in a series of engineering problems such as the restoration of weak foundations, seismic retrofitting, erosion protection, and the enhancement of heat transfer in thermo-active geo-structures. The project foresees to adopt multiple loading conditions for its laboratory characterization and ultimately pass to the large experimental scale. BIOGEOS further aims to provide new knowledge around the way we perceive materials in relation with their micro-structure by implementing state-of-the-art inspection of the material’s structure in 3D space and subsequent prediction of their behaviour through numerical tools.
Max ERC Funding
2 497 115 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BONDS
Project Bilayered ON-Demand Scaffolds: On-Demand Delivery from induced Pluripotent Stem Cell Derived Scaffolds for Diabetic Foot Ulcers
Researcher (PI) Cathal KEARNEY
Host Institution (HI) ROYAL COLLEGE OF SURGEONS IN IRELAND
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Summary
This program’s goal is to develop a scaffold using a new biomaterial source that is functionalised with on-demand delivery of genes for coordinated healing of diabetic foot ulcers (DFUs). DFUs are chronic wounds that are often recalcitrant to treatment, which devastatingly results in lower leg amputation. This project builds on the PI’s experience growing matrix from induced-pluripotent stem cell derived (iPS)-fibroblasts and in developing on-demand drug delivery technologies. The aim of this project is to first develop a SiPS: a scaffold from iPS-fibroblast grown matrix, which has never been tested as a source material for scaffolds. iPS-fibroblasts grow a more pro-repair and angiogenic matrix than (non-iPS) adult fibroblasts. The SiPS structure will be bilayered to mimic native skin: dermis made mostly by fibroblasts and epidermis made by keratinocytes. The dermal layer will consist of a porous scaffold with optimised pore size and mechanical properties and the epidermal layer will be film-like, optimised for keratinisation.
Second, the SiPS will be functionalised with delivery of plasmid-DNA (platelet derived growth factor gene, pPDGF) to direct angiogenesis on-demand. As DFUs undergo uncoordinated healing, timed pPDGF delivery will guide them through angiogenesis and healing. To achieve this, alginate microparticles, designed to respond to ultrasound by releasing pPDGF, will be interspersed throughout the SiPS. This BONDS will be tested in an in vivo pre-clinical DFU model to confirm its ability to heal wounds by providing cells with the appropriate biomimetic scaffold environment and timed directions for healing. With >100 million current diabetics expected to get a DFU, the BONDS would have a powerful clinical impact.
This research program combines a disruptive technology, the SiPS, with a new platform for on-demand delivery of pDNA to heal DFUs. The PI will build his lab around these innovative platforms, adapting them for treatment of diverse complex wounds.
Max ERC Funding
1 372 135 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym CABUM
Project An investigation of the mechanisms at the interaction between cavitation bubbles and contaminants
Researcher (PI) Matevz DULAR
Host Institution (HI) UNIVERZA V LJUBLJANI
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Summary
A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise and vibration of hydraulic machinery. On the other hand, cavitation is a potentially a useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and waste water treatment (bacteria eradication and virus inactivation).
Despite this significant progress a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The overall objective of the project is to understand and determine the fundamental physics of the interaction of cavitation bubbles with different contaminants. To address this issue, the CABUM project will investigate the physical background of cavitation from physical, biological and engineering perspective on three complexity scales: i) on single bubble level, ii) on organised and iii) on random bubble clusters, producing a progressive multidisciplinary synergetic effect.
The proposed synergetic approach builds on the PI's preliminary research and employs novel experimental and numerical methodologies, some of which have been developed by the PI and his research group, to explore the physics of cavitation behaviour in interaction with bacteria and viruses.
Understanding the fundamental physical background of cavitation in interaction with contaminants will have a ground-breaking implications in various scientific fields (engineering, chemistry and biology) and will, in the future, enable the exploitation of cavitation in water and soil treatment processes.
Max ERC Funding
1 904 565 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym CATACOAT
Project Nanostructured catalyst overcoats for renewable chemical production from biomass
Researcher (PI) Jeremy Scott LUTERBACHER
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Summary
In the CATACOAT project, we will develop layer-by-layer solution-processed catalyst overcoating methods, which will result in catalysts that have both targeted and broad impacts. We will produce highly active, stable and selective catalysts for the upgrading of lignin – the largest natural source of aromatic chemicals – into commodity chemicals, which will have an important targeted impact. The broader impact of our work will lie in the production of catalytic materials with unprecedented control over the active site architecture.
There is an urgent need to provide these cheap, stable, selective, and highly active catalysts for renewable molecule production. Thanks to its availability and relatively low cost, lignocellulosic biomass is an attractive source of renewable carbon. However, unlike petroleum, biomass-derived molecules are highly oxygenated, and often produced in dilute-aqueous streams. Heterogeneous catalysts – the workhorses of the petrochemical industry – are sensitive to water and contain many metals that easily sinter and leach in liquid-phase conditions. The production of renewable chemicals from biomass, especially valuable aromatics, often requires expensive platinum group metals and suffers from low selectivity.
Catalyst overcoating presents a potential solution to this problem. Recent breakthroughs using catalyst overcoating with atomic layer deposition (ALD) showed that base metal catalysts can be stabilized against sintering and leaching in liquid phase conditions. However, ALD creates dramatic drops in activity due to excessive coverage, and forms an overcoat that cannot be tuned.
Our materials will feature the controlled placement of metal sites (including single atoms), several oxide sites, and even molecular imprints with sub-nanometer precision within highly accessible nanocavities. We anticipate that such materials will create unprecedented opportunities for reducing cost and increasing sustainability in the chemical industry and beyond.
Max ERC Funding
1 785 195 €
Duration
Start date: 2017-12-01, End date: 2022-11-30
Project acronym COGRA
Project Decoding the Mechanics of Metals by Coarse-Grained Atomistics
Researcher (PI) Dennis Michael KOCHMANN
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary """First principles"" and ""bottom-up"" have become buzz words across scientific and engineering disciplines when it comes to the discovery, prediction and understanding of material properties and their link to processing and microstructure. Reality, however, teaches us that in the foreseeable future computational resources will be insufficient to apply predictive techniques such as quantum mechanics or atomistics to the technologically most relevant length and time scales - far above nanometers and nanoseconds. This proposal aims for nothing less but the seemingly impossible: the application of atomistic techniques to problems occurring over microns to millimeters and seconds to minutes. Instead of relying on computational power, this will be achieved by a combination of scale-bridging methodologies (involving the PI's nonlocal and meshless quasicontinuum techniques, concepts from particle methods, continuum and statistical mechanics) and computational science strategies in order to produce new theory and an open-source, computational toolset for long-term, large-scale simulations relying solely on atomistic input. Spatial upscaling, temporal upscaling as well as heat and mass transfer will be addressed. Enabled by the new scale-bridging capabilities, two representative, open challenges will be investigated: recrystallization in magnesium during thermo-mechanical processing and corrosion in steel by hydrogen embrittlement. Both are of enormous technological and economic importance but current techniques are insufficient to bridge the gap between the macroscopic mechanical performance, microstructural mechanisms and predictive atomic-scale simulations. The outcomes of this five-year research program will provide never-before techniques and numerical tools to catalyze a user community across science and technology. Although the focus is on metals, several of the proposed techniques are applicable to a significantly wider range of materials and applications."
Summary
"""First principles"" and ""bottom-up"" have become buzz words across scientific and engineering disciplines when it comes to the discovery, prediction and understanding of material properties and their link to processing and microstructure. Reality, however, teaches us that in the foreseeable future computational resources will be insufficient to apply predictive techniques such as quantum mechanics or atomistics to the technologically most relevant length and time scales - far above nanometers and nanoseconds. This proposal aims for nothing less but the seemingly impossible: the application of atomistic techniques to problems occurring over microns to millimeters and seconds to minutes. Instead of relying on computational power, this will be achieved by a combination of scale-bridging methodologies (involving the PI's nonlocal and meshless quasicontinuum techniques, concepts from particle methods, continuum and statistical mechanics) and computational science strategies in order to produce new theory and an open-source, computational toolset for long-term, large-scale simulations relying solely on atomistic input. Spatial upscaling, temporal upscaling as well as heat and mass transfer will be addressed. Enabled by the new scale-bridging capabilities, two representative, open challenges will be investigated: recrystallization in magnesium during thermo-mechanical processing and corrosion in steel by hydrogen embrittlement. Both are of enormous technological and economic importance but current techniques are insufficient to bridge the gap between the macroscopic mechanical performance, microstructural mechanisms and predictive atomic-scale simulations. The outcomes of this five-year research program will provide never-before techniques and numerical tools to catalyze a user community across science and technology. Although the focus is on metals, several of the proposed techniques are applicable to a significantly wider range of materials and applications."
Max ERC Funding
1 995 128 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym COSMOS
Project Computational Simulations of MOFs for Gas Separations
Researcher (PI) Seda Keskin Avci
Host Institution (HI) KOC UNIVERSITY
Call Details Starting Grant (StG), PE8, ERC-2017-STG
Summary Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Summary
Metal organic frameworks (MOFs) are recently considered as new fascinating nanoporous materials. MOFs have very large surface areas, high porosities, various pore sizes/shapes, chemical functionalities and good thermal/chemical stabilities. These properties make MOFs highly promising for gas separation applications. Thousands of MOFs have been synthesized in the last decade. The large number of available MOFs creates excellent opportunities to develop energy-efficient gas separation technologies. On the other hand, it is very challenging to identify the best materials for each gas separation of interest. Considering the continuous rapid increase in the number of synthesized materials, it is practically not possible to test each MOF using purely experimental manners. Highly accurate computational methods are required to identify the most promising MOFs to direct experimental efforts, time and resources to those materials. In this project, I will build a complete MOF library and use molecular simulations to assess adsorption and diffusion properties of gas mixtures in MOFs. Results of simulations will be used to predict adsorbent and membrane properties of MOFs for scientifically and technologically important gas separation processes such as CO2/CH4 (natural gas purification), CO2/N2 (flue gas separation), CO2/H2, CH4/H2 and N2/H2 (hydrogen recovery). I will obtain the fundamental, atomic-level insights into the common features of the top-performing MOFs and establish structure-performance relations. These relations will be used as guidelines to computationally design new MOFs with outstanding separation performances for CO2 capture and H2 recovery. These new MOFs will be finally synthesized in the lab scale and tested as adsorbents and membranes under practical operating conditions for each gas separation of interest. Combining a multi-stage computational approach with experiments, this project will lead to novel, efficient gas separation technologies based on MOFs.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-10-01, End date: 2022-09-30
Project acronym GANGS
Project Gangs, Gangsters, and Ganglands: Towards a Global Comparative Ethnography
Researcher (PI) Dennis RODGERS
Host Institution (HI) FONDATION POUR L INSTITUT DE HAUTES ETUDES INTERNATIONALES ET DU DEVELOPPEMENT
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary Gangs occupy a key position in the global imaginary of violence, widely perceived and represented as primary sources of brutality and insecurity. This can be related to the fact that they are one of a small number of truly global phenomena, found in almost every society across both time and space. At the same time, however, as almost 100 years of gang research have highlighted, the phenomenon can vary significantly in form, dynamics, and consequences. While there have been many insightful studies of gangs, the overwhelming majority have focused on a single group or location, and we still lack a proper sense of what kinds of gang dynamics might be general, and which ones are specific to particular times and places. The GANGS project will develop a systematic comparative investigation of global gang dynamics, to better understand why they emerge, how they evolve over time, whether they are associated with particular urban configurations, how and why individuals join gangs, and what impact this has on their potential futures. It will draw on original ethnographic research carried out in multiple locations, adopting an explicitly tripartite focus on “Gangs”, “Gangsters”, and “Ganglands” in order to better explore the interplay between group, individual, and contextual factors. The first will consider the organisational dynamics of gangs, the second will focus on individual gang members and their trajectories before, during, and after their involvement in a gang, while the third will reflect on the contexts within which gangs emerge and evolve. Research will combine innovative collaborative ethnography in Nicaragua, South Africa, and France, a ground-breaking comparison of 35 individual gang member life histories from across Africa, Asia, Europe, North and South America, and unique joint ethnographic investigations into the political economy of three gang-affected cities in Nicaragua, France, and South Africa.
Summary
Gangs occupy a key position in the global imaginary of violence, widely perceived and represented as primary sources of brutality and insecurity. This can be related to the fact that they are one of a small number of truly global phenomena, found in almost every society across both time and space. At the same time, however, as almost 100 years of gang research have highlighted, the phenomenon can vary significantly in form, dynamics, and consequences. While there have been many insightful studies of gangs, the overwhelming majority have focused on a single group or location, and we still lack a proper sense of what kinds of gang dynamics might be general, and which ones are specific to particular times and places. The GANGS project will develop a systematic comparative investigation of global gang dynamics, to better understand why they emerge, how they evolve over time, whether they are associated with particular urban configurations, how and why individuals join gangs, and what impact this has on their potential futures. It will draw on original ethnographic research carried out in multiple locations, adopting an explicitly tripartite focus on “Gangs”, “Gangsters”, and “Ganglands” in order to better explore the interplay between group, individual, and contextual factors. The first will consider the organisational dynamics of gangs, the second will focus on individual gang members and their trajectories before, during, and after their involvement in a gang, while the third will reflect on the contexts within which gangs emerge and evolve. Research will combine innovative collaborative ethnography in Nicaragua, South Africa, and France, a ground-breaking comparison of 35 individual gang member life histories from across Africa, Asia, Europe, North and South America, and unique joint ethnographic investigations into the political economy of three gang-affected cities in Nicaragua, France, and South Africa.
Max ERC Funding
2 498 079 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym HINBOTS
Project Highly Integrated Nanoscale Robots for Targeted Delivery to the Central Nervous System
Researcher (PI) Salvador Pané Vidal
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Consolidator Grant (CoG), PE8, ERC-2017-COG
Summary Over the past two decades researchers have been working to create synthetic small-scale machines ranging from molecular entities or miniaturized structures, to more complex assemblies of micro- and nanomaterials. These machines are able to navigate in complex environments by harvesting fuel from the surrounding media or from external power sources. One of the most sought-after applications for these miniaturized machines is to perform minimally invasive interventions, in which these devices will ultimately reduce risk, cost, and discomfort compared to conventional interventions. This has driven researchers to produce a myriad of small-scale robots loaded with therapeutic cargo. While recent research has demonstrated the potential of these devices in animal models, a number of challenges remain in moving small-scale robots into the operating theatre. Here, we propose highly integrated nanorobots capable of realizing several functions on-demand by capitalizing on recent developments in small-scale robotics, multiferroics, supramolecular chemistry, and gated materials. These nanorobots will integrate a porous inorganic active chassis made of a piezoelectric or a magnetoelectric multiferroic that will host therapeutic agents, with redox or electroresponsive supramolecular gates that will control the release of payloads. We will demonstrate for the first time that redox- and electroresponsive supramolecular machinery grafted onto the surface of piezoelectric or multiferroic platforms can be remotely controlled by means of a piezoelectrochemical potential triggered by acoustic and magnetic fields. The ultimate goal of this research consists of creating smart multifunctional nanorobots, which will act on affected sites of the central nervous system by delivering therapeutic agents and electrostimulating the rewiring of neural circuitry.
Summary
Over the past two decades researchers have been working to create synthetic small-scale machines ranging from molecular entities or miniaturized structures, to more complex assemblies of micro- and nanomaterials. These machines are able to navigate in complex environments by harvesting fuel from the surrounding media or from external power sources. One of the most sought-after applications for these miniaturized machines is to perform minimally invasive interventions, in which these devices will ultimately reduce risk, cost, and discomfort compared to conventional interventions. This has driven researchers to produce a myriad of small-scale robots loaded with therapeutic cargo. While recent research has demonstrated the potential of these devices in animal models, a number of challenges remain in moving small-scale robots into the operating theatre. Here, we propose highly integrated nanorobots capable of realizing several functions on-demand by capitalizing on recent developments in small-scale robotics, multiferroics, supramolecular chemistry, and gated materials. These nanorobots will integrate a porous inorganic active chassis made of a piezoelectric or a magnetoelectric multiferroic that will host therapeutic agents, with redox or electroresponsive supramolecular gates that will control the release of payloads. We will demonstrate for the first time that redox- and electroresponsive supramolecular machinery grafted onto the surface of piezoelectric or multiferroic platforms can be remotely controlled by means of a piezoelectrochemical potential triggered by acoustic and magnetic fields. The ultimate goal of this research consists of creating smart multifunctional nanorobots, which will act on affected sites of the central nervous system by delivering therapeutic agents and electrostimulating the rewiring of neural circuitry.
Max ERC Funding
1 998 720 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym ISLAM-OPHOB-ISM
Project Nativism, Islamophobism and Islamism in the Age of Populism: Culturalisation and Religionisation of what is Social, Economic and Political in Europe
Researcher (PI) Ayhan KAYA
Host Institution (HI) ISTANBUL BILGI UNIVERSITESI
Call Details Advanced Grant (AdG), SH3, ERC-2017-ADG
Summary The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Summary
The main research question of the study is: How and why do some European citizens generate a populist and Islamophobist discourse to express their discontent with the current social, economic and political state of their national and European contexts, while some members of migrant-origin communities with Muslim background generate an essentialist and radical form of Islamist discourse within the same societies? The main premise of this study is that various segments of the European public (radicalizing young members of both native populations and migrant-origin populations with Muslim background), who have been alienated and swept away by the flows of globalization such as deindustrialization, mobility, migration, tourism, social-economic inequalities, international trade, and robotic production, are more inclined to respectively adopt two mainstream political discourses: Islamophobism (for native populations) and Islamism (for Muslim-migrant-origin populations). Both discourses have become pivotal along with the rise of the civilizational rhetoric since the early 1990s. On the one hand, the neo-liberal age seems to be leading to the nativisation of radicalism among some groups of host populations while, on the other hand, it is leading to the islamization of radicalism among some segments of deprived migrant-origin populations. The common denominator of these groups is that they are both downwardly mobile and inclined towards radicalization. Hence, this project aims to scrutinize social, economic, political and psychological sources of the processes of radicalization among native European youth and Muslim-origin youth with migration background, who are both inclined to express their discontent through ethnicity, culture, religion, heritage, homogeneity, authenticity, past, gender and patriarchy. The field research will comprise four migrant receiving countries: Germany, France, Belgium, and the Netherlands, and two migrant sending countries: Turkey and Morocco.
Max ERC Funding
2 276 125 €
Duration
Start date: 2019-01-01, End date: 2023-12-31
Project acronym MISFIRES
Project Misfires and Market Innovation: Toward a Collaborative Turn in Organising Markets
Researcher (PI) Susi Geiger
Host Institution (HI) UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN
Call Details Consolidator Grant (CoG), SH3, ERC-2017-COG
Summary MISFIRES opens up new theoretical and empirical horizons for analysing and innovating ‘concerned markets’, where multiple actors’ interests, values and concerns clash. It asks how actors can engage with a market’s failures to challenge its organisation and make it more collaborative, more open to civic values and to social or political concerns. Concerned markets are contested by diverse actors with equally diverse perspectives and value measures. Evaluating such a market’s efficiency is as much of an illusion as redesigning its inner workings on a blackboard. We need new conceptual frameworks to understand how to innovate concerned markets from the inside to make them ‘better’ (as defined by concerned actors), and we urgently need empirical insights into how collaborative action in markets with such social and political stakes may translate into market change. MISFIRES relies on science and technology studies, pragmatic sociology and critical market studies to shift thinking around market organisation from failure and design to collaboration and experimentation. I devise an ethnographic and participatory inquiry to explore how a market’s failures can lead us to markets that are more attentive to and accommodating of the concerns they create. I choose three exemplary contested markets in healthcare (licensing of antiretroviral drugs, Hepatitis C pricing, and the sale of DNA information) and two emergent controversies to investigate the activities concerned actors undertake, and the instruments and devices they experiment with, to re-organise that market. MISFIRES will comprehensively map, engage in, and conceptualise this collaborative turn in organising markets. With this, MISFIRES will guide new academic and policy thinking by establishing how:
1) concerned actors voice and mobilise around the notion that a market has ‘failed’ them;
2) concerned actors seek to negotiate and address market failures;
3) this process may lead to ‘better’ markets.
Summary
MISFIRES opens up new theoretical and empirical horizons for analysing and innovating ‘concerned markets’, where multiple actors’ interests, values and concerns clash. It asks how actors can engage with a market’s failures to challenge its organisation and make it more collaborative, more open to civic values and to social or political concerns. Concerned markets are contested by diverse actors with equally diverse perspectives and value measures. Evaluating such a market’s efficiency is as much of an illusion as redesigning its inner workings on a blackboard. We need new conceptual frameworks to understand how to innovate concerned markets from the inside to make them ‘better’ (as defined by concerned actors), and we urgently need empirical insights into how collaborative action in markets with such social and political stakes may translate into market change. MISFIRES relies on science and technology studies, pragmatic sociology and critical market studies to shift thinking around market organisation from failure and design to collaboration and experimentation. I devise an ethnographic and participatory inquiry to explore how a market’s failures can lead us to markets that are more attentive to and accommodating of the concerns they create. I choose three exemplary contested markets in healthcare (licensing of antiretroviral drugs, Hepatitis C pricing, and the sale of DNA information) and two emergent controversies to investigate the activities concerned actors undertake, and the instruments and devices they experiment with, to re-organise that market. MISFIRES will comprehensively map, engage in, and conceptualise this collaborative turn in organising markets. With this, MISFIRES will guide new academic and policy thinking by establishing how:
1) concerned actors voice and mobilise around the notion that a market has ‘failed’ them;
2) concerned actors seek to negotiate and address market failures;
3) this process may lead to ‘better’ markets.
Max ERC Funding
1 923 780 €
Duration
Start date: 2018-08-01, End date: 2023-07-31