Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym AISENS
Project New generation of high sensitive atom interferometers
Researcher (PI) Marco Fattori
Host Institution (HI) CONSIGLIO NAZIONALE DELLE RICERCHE
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Summary
Interferometers are fundamental tools for the study of nature laws and for the precise measurement and control of the physical world. In the last century, the scientific and technological progress has proceeded in parallel with a constant improvement of interferometric performances. For this reason, the challenge of conceiving and realizing new generations of interferometers with broader ranges of operation and with higher sensitivities is always open and actual.
Despite the introduction of laser devices has deeply improved the way of developing and performing interferometric measurements with light, the atomic matter wave analogous, i.e. the Bose-Einstein condensate (BEC), has not yet triggered any revolution in precision interferometry. However, thanks to recent improvements on the control of the quantum properties of ultra-cold atomic gases, and new original ideas on the creation and manipulation of quantum entangled particles, the field of atom interferometry is now mature to experience a big step forward.
The system I want to realize is a Mach-Zehnder spatial interferometer operating with trapped BECs. Undesired decoherence sources will be suppressed by implementing BECs with tunable interactions in ultra-stable optical potentials. Entangled states will be used to improve the sensitivity of the sensor beyond the standard quantum limit to ideally reach the ultimate, Heisenberg, limit set by quantum mechanics. The resulting apparatus will show unprecedented spatial resolution and will overcome state-of-the-art interferometers with cold (non condensed) atomic gases.
A successful completion of this project will lead to a new generation of interferometers for the immediate application to local inertial measurements with unprecedented resolution. In addition, we expect to develop experimental capabilities which might find application well beyond quantum interferometry and crucially contribute to the broader emerging field of quantum-enhanced technologies.
Max ERC Funding
1 068 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ALLQUANTUM
Project All-solid-state quantum electrodynamics in photonic crystals
Researcher (PI) Peter Lodahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Summary
In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Max ERC Funding
1 199 648 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym ANISOTROPIC UNIVERSE
Project The anisotropic universe -- a reality or fluke?
Researcher (PI) Hans Kristian Kamfjord Eriksen
Host Institution (HI) UNIVERSITETET I OSLO
Call Details Starting Grant (StG), PE9, ERC-2010-StG_20091028
Summary "During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Summary
"During the last decade, a strikingly successful cosmological concordance model has been established. With only six free parameters, nearly all observables, comprising millions of data points, may be fitted with outstanding precision. However, in this beautiful picture a few ""blemishes"" have turned up, apparently not consistent with the standard model: While the model predicts that the universe is isotropic (i.e., looks the same in all directions) and homogeneous (i.e., the statistical properties are the same everywhere), subtle hints of the contrary are now seen. For instance, peculiar preferred directions and correlations are observed in the cosmic microwave background; some studies considering nearby galaxies suggest the existence of anomalous large-scale cosmic flows; a study of distant quasars hints towards unexpected large-scale correlations. All of these reports are individually highly intriguing, and together they hint toward a more complicated and interesting universe than previously imagined -- but none of the reports can be considered decisive. One major obstacle in many cases has been the relatively poor data quality.
This is currently about to change, as the next generation of new and far more powerful experiments are coming online. Of special interest to me are Planck, an ESA-funded CMB satellite currently taking data; QUIET, a ground-based CMB polarization experiment located in Chile; and various large-scale structure (LSS) data sets, such as the SDSS and 2dF surveys, and in the future Euclid, a proposed galaxy survey satellite also funded by ESA. By combining the world s best data from both CMB and LSS measurements, I will in the proposed project attempt to settle this question: Is our universe really anisotropic? Or are these recent claims only the results of systematic errors or statistical flukes? If the claims turn out to hold against this tide of new and high-quality data, then cosmology as a whole may need to be re-written."
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym ANOREP
Project Targeting the reproductive biology of the malaria mosquito Anopheles gambiae: from laboratory studies to field applications
Researcher (PI) Flaminia Catteruccia
Host Institution (HI) UNIVERSITA DEGLI STUDI DI PERUGIA
Call Details Starting Grant (StG), LS2, ERC-2010-StG_20091118
Summary Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Summary
Anopheles gambiae mosquitoes are the major vectors of malaria, a disease with devastating consequences for
human health. Novel methods for controlling the natural vector populations are urgently needed, given the
evolution of insecticide resistance in mosquitoes and the lack of novel insecticidals. Understanding the
processes at the bases of mosquito biology may help to roll back malaria. In this proposal, we will target
mosquito reproduction, a major determinant of the An. gambiae vectorial capacity. This will be achieved at
two levels: (i) fundamental research, to provide a deeper knowledge of the processes regulating reproduction
in this species, and (ii) applied research, to identify novel targets and to develop innovative approaches for
the control of natural populations. We will focus our analysis on three major players of mosquito
reproduction: male accessory glands (MAGs), sperm, and spermatheca, in both laboratory and field settings.
We will then translate this information into the identification of inhibitors of mosquito fertility. The
experimental activities will be divided across three objectives. In Objective 1, we will unravel the role of the
MAGs in shaping mosquito fertility and behaviour, by performing a combination of transcriptional and
functional studies that will reveal the multifaceted activities of these tissues. In Objective 2 we will instead
focus on the identification of the male and female factors responsible for sperm viability and function.
Results obtained in both objectives will be validated in field mosquitoes. In Objective 3, we will perform
screens aimed at the identification of inhibitors of mosquito reproductive success. This study will reveal as
yet unknown molecular mechanisms underlying reproductive success in mosquitoes, considerably increasing
our knowledge beyond the state-of-the-art and critically contributing with innovative tools and ideas to the
fight against malaria.
Max ERC Funding
1 500 000 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym BONEPHAGY
Project Defining the role of the FGF – autophagy axis in bone physiology
Researcher (PI) Carmine SETTEMBRE
Host Institution (HI) FONDAZIONE TELETHON
Call Details Starting Grant (StG), LS4, ERC-2016-STG
Summary Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Summary
Autophagy is a fundamental cellular catabolic process deputed to the degradation and recycling of a variety of intracellular materials. Autophagy plays a significant role in multiple human physio-pathological processes and is now emerging as a critical regulator of skeletal development and homeostasis. We have discovered that during postnatal development in mice, the growth factor FGF18 induces autophagy in the chondrocyte cells of the growth plate to regulate the secretion of type II collagen, a major component of cartilaginous extracellular matrix. The FGF signaling pathways play crucial roles during skeletal development and maintenance and are deregulated in many skeletal disorders. Hence our findings may offer the unique opportunity to uncover new molecular mechanisms through which FGF pathways regulate skeletal development and maintenance and to identify new targets for the treatment of FGF-related skeletal disorders. In this grant application we propose to study the role played by the different FGF ligands and receptors on autophagy regulation and to investigate the physiological relevance of these findings in the context of skeletal growth, homeostasis and maintenance. We will also investigate the intracellular machinery that links FGF signalling pathways to the regulation of autophagy. In addition, we generated preliminary data showing an impairment of autophagy in chondrocyte models of Achondroplasia (ACH) and Thanathoporic dysplasia, two skeletal disorders caused by mutations in FGFR3. We propose to study the role of autophagy in the pathogenesis of FGFR3-related dwarfisms and explore the pharmacological modulation of autophagy as new therapeutic approach for achondroplasia. This application, which combines cell biology, mouse genetics and pharmacological approaches, has the potential to shed light on new mechanisms involved in organismal development and homeostasis, which could be targeted to treat bone and cartilage diseases.
Max ERC Funding
1 586 430 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BORDERLANDS
Project Borderlands: Expanding Boundaries, Governance, and Power in the European Union's Relations with North Africa and the Middle East
Researcher (PI) Raffaella Alessandra Del Sarto
Host Institution (HI) EUROPEAN UNIVERSITY INSTITUTE
Call Details Starting Grant (StG), SH2, ERC-2010-StG_20091209
Summary Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Summary
Challenging the notion of Fortress Europe , the research investigates relations between the European Union and its southern periphery through the concept of borderlands . The concept emphasises the disaggregation of the triple function of borders demarcating state territory, authority, and national identity inherent in the Westphalian model of statehood. This process is most visible in (although not limited to) Europe, where integration has led to supranational areas of sovereignty, an internal market, a common currency, and a zone of free movement of people, each with a different territorial span. The project explores the complex and differentiated process by which the EU extends its unbundled functional and legal borders to the so-called southern Mediterranean (North Africa and parts of the Middle East), thereby transforming it into borderlands . They connect the European core with the periphery through various legal and functional border regimes, governance patterns, and the selective outsourcing of some EU border control duties. The overarching questions informing this research is whether, first, the borderland policies of the EU, described by some as a neo-medieval empire, is a functional consequence of the specific integration model pursued inside the EU, a matter of foreign policy choice or a local manifestation of a broader global phenomenon. Second, the project addresses the question of power dynamics that underwrite borderland governance, presuming a growing leverage of third country governments resulting from their co-optation as gatekeepers. Thus, while adopting an innovative approach, the project will enhance our understanding of EU-Mediterranean relations while also addressing crucial theoretical questions in international relations.
Max ERC Funding
1 353 920 €
Duration
Start date: 2011-10-01, End date: 2017-03-31
Project acronym CAT4ENSUS
Project Molecular Catalysts Made of Earth-Abundant Elements for Energy and Sustainability
Researcher (PI) Xile Hu
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Summary
Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Max ERC Funding
1 475 712 €
Duration
Start date: 2011-01-01, End date: 2015-12-31