Project acronym 3S-BTMUC
Project Soft, Slimy, Sliding Interfaces: Biotribological Properties of Mucins and Mucus gels
Researcher (PI) Seunghwan Lee
Host Institution (HI) DANMARKS TEKNISKE UNIVERSITET
Call Details Starting Grant (StG), LS9, ERC-2010-StG_20091118
Summary Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Summary
Mucins are a family of high-molecular-weight glycoproteins and a major macromolecular constituent in slimy mucus gels that are covering the surface of internal biological tissues. A primary role of mucus gels in biological systems is known to be the protection and lubrication of underlying epithelial cell surfaces. This is intuitively well appreciated by both science community and the public, and yet detailed lubrication properties of mucins and mucus gels have remained largely unexplored to date. Detailed and systematic understanding of the lubrication mechanism of mucus gels is significant from many angles; firstly, lubricity of mucus gels is closely related with fundamental functions of various human organs, such as eye blinking, mastication in oral cavity, swallowing through esophagus, digestion in stomach, breathing through air way and respiratory organs, and thus often indicates the health state of those organs. Furthermore, for the application of various tissue-contacting devices or personal care products, e.g. catheters, endoscopes, and contact lenses, mucus gel layer is the first counter surface that comes into the mechanical and tribological contacts with them. Finally, remarkable lubricating performance by mucins and mucus gels in biological systems may provide many useful and possibly innovative hints in utilizing water as base lubricant for man-made engineering systems. This project thus proposes to carry out a 5 year research program focusing on exploring the lubricity of mucins and mucus gels by combining a broad range of experimental approaches in biology and tribology.
Max ERC Funding
1 432 920 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym ALLQUANTUM
Project All-solid-state quantum electrodynamics in photonic crystals
Researcher (PI) Peter Lodahl
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE2, ERC-2010-StG_20091028
Summary In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Summary
In quantum electrodynamics a range of fundamental processes are driven by omnipresent vacuum fluctuations. Photonic crystals can control vacuum fluctuations and thereby the fundamental interaction between light and matter. We will conduct experiments on quantum dots in photonic crystals and observe novel quantum electrodynamics effects including fractional decay and the modified Lamb shift. Furthermore, photonic crystals will be explored for shielding sensitive quantum-superposition states against decoherence.
Defects in photonic crystals allow novel functionalities enabling nanocavities and waveguides. We will use the tight confinement of light in a nanocavity to entangle a quantum dot and a photon, and explore the scalability. Controlled ways of generating scalable and robust quantum entanglement is the essential missing link limiting quantum communication and quantum computing. A single quantum dot coupled to a slowly propagating mode in a photonic crystal waveguide will be used to induce large nonlinearities at the few-photon level.
Finally we will explore a novel route to enhanced light-matter interaction employing controlled disorder in photonic crystals. In disordered media multiple scattering of light takes place and can lead to the formation of Anderson-localized modes. We will explore cavity quantum electrodynamics in Anderson-localized random cavities considering disorder a resource and not a nuisance, which is the traditional view.
The main focus of the project will be on optical experiments, but fabrication of photonic crystals and detailed theory will be carried out as well. Several of the proposed experiments will constitute milestones in quantum optics and may pave the way for all-solid-state quantum communication with quantum dots in photonic crystals.
Max ERC Funding
1 199 648 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym BEAM-EDM
Project Unique Method for a Neutron Electric Dipole Moment Search using a Pulsed Beam
Researcher (PI) Florian Michael PIEGSA
Host Institution (HI) UNIVERSITAET BERN
Call Details Starting Grant (StG), PE2, ERC-2016-STG
Summary My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Summary
My research encompasses the application of novel methods and strategies in the field of low energy particle physics. The goal of the presented program is to lead an independent and highly competitive experiment to search for a CP violating neutron electric dipole moment (nEDM), as well as for new exotic interactions using highly sensitive neutron and proton spin resonance techniques.
The measurement of the nEDM is considered to be one of the most important fundamental physics experiments at low energy. It represents a promising route for finding new physics beyond the standard model (SM) and describes an important search for new sources of CP violation in order to understand the observed large baryon asymmetry in our universe. The main project will follow a novel concept based on my original idea, which plans to employ a pulsed neutron beam at high intensity instead of the established use of storable ultracold neutrons. This complementary and potentially ground-breaking method provides the possibility to distinguish between the signal due to a nEDM and previously limiting systematic effects, and should lead to an improved result compared to the present best nEDM beam experiment. The findings of these investigations will be of paramount importance and will form the cornerstone for the success of the full-scale experiment intended for the European Spallation Source. A second scientific question will be addressed by performing spin precession experiments searching for exotic short-range interactions and associated light bosons. This is a vivid field of research motivated by various extensions to the SM. The goal of these measurements, using neutrons and protons, is to search for additional interactions such new bosons mediate between ordinary particles.
Both topics describe ambitious and unique efforts. They use related techniques, address important questions in fundamental physics, and have the potential of substantial scientific implications and high-impact results.
Max ERC Funding
1 404 062 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CAT4ENSUS
Project Molecular Catalysts Made of Earth-Abundant Elements for Energy and Sustainability
Researcher (PI) Xile Hu
Host Institution (HI) ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Call Details Starting Grant (StG), PE5, ERC-2010-StG_20091028
Summary Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Summary
Energy and sustainability are among the biggest challenges humanity faces this century. Catalysis is an indispensable component for many potential solutions, and fundamental research in catalysis is as urgent as ever. Here, we propose to build up an interdisciplinary research program in molecular catalysis to address the challenges of energy and sustainability. There are two specific aims: (I) bio-inspired sulfur-rich metal complexes as efficient and practical electrocatalysts for hydrogen production and CO2 reduction; (II) well-defined Fe complexes of chelating pincer ligands for chemo- and stereoselective organic synthesis. An important feature of the proposed catalysts is that they are made of earth-abundant and readily available elements such as Fe, Co, Ni, S, N, etc.
Design and synthesis of catalysts are the starting point and a key aspect of this project. A major inspiration comes from nature, where metallo-enzymes use readily available metals for fuel production and challenging reactions. Our accumulated knowledge and experience in spectroscopy, electrochemistry, reaction chemistry, mechanism, and catalysis will enable us to thoroughly study the synthetic catalysts and their applications towards the research targets. Furthermore, we will explore research territories such as electrode modification and fabrication, catalyst immobilization and attachment, and asymmetric catalysis.
The proposed research should not only result in new insights and knowledge in catalysis that are relevant to energy and sustainability, but also produce functional, scalable, and economically feasible catalysts for fuel production and organic synthesis. The program can contribute to excellence in European research.
Max ERC Funding
1 475 712 €
Duration
Start date: 2011-01-01, End date: 2015-12-31
Project acronym CELLTYPESANDCIRCUITS
Project Neural circuit function in the retina of mice and humans
Researcher (PI) Botond Roska
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Starting Grant (StG), LS5, ERC-2010-StG_20091118
Summary The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Summary
The mammalian brain is assembled from thousands of neuronal cell types that are organized into distinct circuits to perform behaviourally relevant computations. To gain mechanistic insights about brain function and to treat specific diseases of the nervous system it is crucial to understand what these local circuits are computing and how they achieve these computations. By examining the structure and function of a few genetically identified and experimentally accessible neural circuits we plan to address fundamental questions about the functional architecture of neural circuits. First, are cell types assigned to a unique functional circuit with a well-defined function or do they participate in multiple circuits (multitasking cell types), adjusting their role depending on the state of these circuits? Second, does a neural circuit perform a single computation or depending on the information content of its inputs can it carry out radically different functions? Third, how, among the large number of other cell types, do the cells belonging to the same functional circuit connect together during development? We use the mouse retina as a model system to address these questions. Finally, we will study the structure and function of a specialised neural circuit in the human fovea that enables humans to read. We predict that our insights into the mechanism of multitasking, network switches and the development of selective connectivity will be instructive to study similar phenomena in other brain circuits. Knowledge of the structure and function of the human fovea will open up new opportunities to correlate human retinal function with human visual behaviour and our genetic technologies to study human foveal function will allow us and others to design better strategies for restoring vision for the blind.
Max ERC Funding
1 499 000 €
Duration
Start date: 2010-11-01, End date: 2015-10-31
Project acronym ChemEpigen
Project The chemical understanding of biomolecular recognition in epigenetics
Researcher (PI) Jasmin MECINOVIC
Host Institution (HI) SYDDANSK UNIVERSITET
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Summary
The ultimate aim of this ERC project is to provide a comprehensive and complete understanding, at the atomic-level of sophistication, of genuinely important biomolecular recognition processes in epigenetics that play key roles in human health and disease. At the biochemical level, epigenetics refers to mechanisms, such as enzymatic modifications of DNA and posttranslational modifications of the associated histone proteins, that regulate the activity of human genes. The proposed work aims to address epigenetics using the physical-organic chemistry approach that enables the elucidation of the elemental processes with unprecedented molecular/atomic detail. The project will experimentally and computationally examine non-covalent interactions between three essential constituents of the epigenetic biomolecular system, namely epigenetic proteins, histones and water, at the level of short histone peptides, intact histone proteins, the nucleosome assembly and nucleosome arrays. Our programme, built on synergistic thermodynamic, structural and computational studies, aims to unravel i) the underlying chemical origin of methyllysine-containing histones in epigenetics, ii) the chemical basis for the recognition of methylarginine-containing histones in epigenetic processes, and iii) the role of unstructured histone tails in biomolecular recognition, which together form the three main structural elements found in the epigenetic framework. Results from this work will be important from both a fundamental molecular perspective as well as from the biomedical perspective, because proteins involved in epigenetic regulation processes are currently regarded as important targets for numerous therapeutic interventions, most notably for cancer treatment.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-04-01, End date: 2022-03-31
Project acronym CHEMHEAT
Project Chemical Control of Heating and Cooling in Molecular Junctions: Optimizing Function and Stability
Researcher (PI) Gemma Solomon
Host Institution (HI) KOBENHAVNS UNIVERSITET
Call Details Starting Grant (StG), PE4, ERC-2010-StG_20091028
Summary Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Summary
Nanoscale systems binding single molecules, or small numbers of molecules, in conducting junctions show considerable promise for a range of technological applications, from photovoltaics to rectifiers to sensors. These environments differ significantly from the traditional domain of chemical studies involving molecules in solution and the gas phase, necessitating renewed efforts to understand the physical properties of these systems. The objective of this proposal concerns one particular class of physical processes: understanding and controlling local heating in molecular junctions in terms of excitation, dissipation and transfer.
Local heating and dissipation in molecular junctions has long been a concern due to the possibly detrimental impact on device stability and function. More recently there has been increased interest, as these processes underlie both spectroscopic techniques and potential technological applications. Together these issues make an investigation of ways to chemically control local heating in molecular junctions timely and important.
The proposal objective will be addressed through the investigation of three challenges:
- Developing chemical control of local heating in molecular junctions.
- Developing chemical control of heat dissipation in molecular junctions.
- Design of optimal thermoelectric materials.
These three challenges constitute distinct, yet complementary, avenues for investigation with progress in each area supporting the other two. All three challenges build on existing theoretical methods, with the important shift of focus to methods to achieve chemical control. The combination of state-of-the-art computational methods with careful chemical studies promises significant new developments for the area.
Max ERC Funding
1 499 999 €
Duration
Start date: 2010-12-01, End date: 2015-11-30
Project acronym Chi2-Nano-Oxides
Project Second-Order Nano-Oxides for Enhanced Nonlinear Photonics
Researcher (PI) Rachel GRANGE RODUIT
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), PE5, ERC-2016-STG
Summary Nonlinear optics is present in our daily life with applications, e.g. light sources for microsurgery or green laser pointer. All of them use bulk materials such as glass fibers or crystals. Generating nonlinear effects from materials at the nanoscale would expand the applications to biology as imaging markers or optoelectronic integrated devices. However, nonlinear signals scale with the volume of a material. Therefore finding materials with high nonlinearities to avoid using high power and large interaction length is challenging. Many studies focus on third order nonlinearities (described by a χ(3) tensor) present in every material (silicon, graphene…) or on metals for enhancing nonlinearities with plasmonics. My approach is to explore second-order χ(2) nanomaterials, since they show higher nonlinearities than χ(3) ones, additional properties such as birefringence, wide band gap for transparency, high refractive index (n>2), and no ohmic losses. Typical χ(2) materials are oxides (BaTiO3, LiNbO3…) with a non-centrosymmetric crystal used for wavelength conversion like in second-harmonic generation (SHG).
The key idea is to demonstrate original strategies to enhance SHG of χ(2) nano-oxides with the material itself and without involving any hybrid effects from other materials such as plasmonic resonances of metals. First, I propose to use multiple Mie resonances from BaTiO3 nanoparticles to boost SHG in the UV to NIR range. Up to now, Mie effects at the nanoscale have been measured in materials with no χ(2) nonlinearities (silicon spheres). Second, since χ(2) oxides are difficult to etch, I will overcome this fabrication issue by demonstrating solution processed imprint lithography to form high-quality photonic crystal cavities from nanoparticles. Third, I will use facet processing of single LiNbO3 nanowire to obtain directionality effects for spectroscopy on-a-chip. This work fosters applications and commercial devices offering a sustainable future to this field.
Summary
Nonlinear optics is present in our daily life with applications, e.g. light sources for microsurgery or green laser pointer. All of them use bulk materials such as glass fibers or crystals. Generating nonlinear effects from materials at the nanoscale would expand the applications to biology as imaging markers or optoelectronic integrated devices. However, nonlinear signals scale with the volume of a material. Therefore finding materials with high nonlinearities to avoid using high power and large interaction length is challenging. Many studies focus on third order nonlinearities (described by a χ(3) tensor) present in every material (silicon, graphene…) or on metals for enhancing nonlinearities with plasmonics. My approach is to explore second-order χ(2) nanomaterials, since they show higher nonlinearities than χ(3) ones, additional properties such as birefringence, wide band gap for transparency, high refractive index (n>2), and no ohmic losses. Typical χ(2) materials are oxides (BaTiO3, LiNbO3…) with a non-centrosymmetric crystal used for wavelength conversion like in second-harmonic generation (SHG).
The key idea is to demonstrate original strategies to enhance SHG of χ(2) nano-oxides with the material itself and without involving any hybrid effects from other materials such as plasmonic resonances of metals. First, I propose to use multiple Mie resonances from BaTiO3 nanoparticles to boost SHG in the UV to NIR range. Up to now, Mie effects at the nanoscale have been measured in materials with no χ(2) nonlinearities (silicon spheres). Second, since χ(2) oxides are difficult to etch, I will overcome this fabrication issue by demonstrating solution processed imprint lithography to form high-quality photonic crystal cavities from nanoparticles. Third, I will use facet processing of single LiNbO3 nanowire to obtain directionality effects for spectroscopy on-a-chip. This work fosters applications and commercial devices offering a sustainable future to this field.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-02-01, End date: 2022-01-31
Project acronym CIRCATRANS
Project Control of mouse metabolism by circadian clock-coordinated mRNA translation
Researcher (PI) Frédéric Bruno Martin Gachon
Host Institution (HI) NESTEC SA
Call Details Starting Grant (StG), LS1, ERC-2010-StG_20091118
Summary The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose and xenobiotic metabolism. Impairment of this rhythm has been show to lead to diverse pathologies including metabolic syndrome. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. We have now collected evidence that post-transcriptional regulations play also an important role in this regulation. Particularly, recent results from our laboratory show that the circadian clock can synchronize mRNA translation in mouse liver through rhythmic activation of the Target Of Rapamycin Complex 1 (TORC1) with a 12-hours period. Based on this unexpected observation, we plan to identify the genes rhythmically translated in the mouse liver as well as the mechanisms involved in this translation. Indeed, our initial observations suggest a cap-independent translation during the day and a cap-dependent translation during the night. Identification of the different complexes involved in translation at this two different times and their correlation with the sequence, structure, and/or function of the translated genes will provide new insight into the action of the circadian clock on animal metabolism. In parallel, we will identify the signalling pathways involved in the rhythmic activation of TORC1 in mouse liver. Finally, we will study the consequences of a deregulated rhythmic translation in circadian clock-deficient mice on the metabolism and the longevity of these animals. Perturbations of the circadian clock have been linked to numerous pathologies, including obesity, type 2 diabetes and cancer. Our project on the importance of circadian clock-coordinated translation will likely reveal new findings in the field of regulation of animal metabolism by the circadian clock.
Summary
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose and xenobiotic metabolism. Impairment of this rhythm has been show to lead to diverse pathologies including metabolic syndrome. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. We have now collected evidence that post-transcriptional regulations play also an important role in this regulation. Particularly, recent results from our laboratory show that the circadian clock can synchronize mRNA translation in mouse liver through rhythmic activation of the Target Of Rapamycin Complex 1 (TORC1) with a 12-hours period. Based on this unexpected observation, we plan to identify the genes rhythmically translated in the mouse liver as well as the mechanisms involved in this translation. Indeed, our initial observations suggest a cap-independent translation during the day and a cap-dependent translation during the night. Identification of the different complexes involved in translation at this two different times and their correlation with the sequence, structure, and/or function of the translated genes will provide new insight into the action of the circadian clock on animal metabolism. In parallel, we will identify the signalling pathways involved in the rhythmic activation of TORC1 in mouse liver. Finally, we will study the consequences of a deregulated rhythmic translation in circadian clock-deficient mice on the metabolism and the longevity of these animals. Perturbations of the circadian clock have been linked to numerous pathologies, including obesity, type 2 diabetes and cancer. Our project on the importance of circadian clock-coordinated translation will likely reveal new findings in the field of regulation of animal metabolism by the circadian clock.
Max ERC Funding
1 475 831 €
Duration
Start date: 2011-03-01, End date: 2016-02-29