Project acronym 2STEPPARKIN
Project A novel two-step model for neurodegeneration in Parkinson’s disease
Researcher (PI) Emi Nagoshi
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS5, ERC-2012-StG_20111109
Summary Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Summary
Parkinson’s disease (PD) is the second most common neurodegenerative disorder primarily caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN). Despite the advances in gene discovery associated with PD, the knowledge of the PD pathogenesis is largely limited to the involvement of these genes in the generic cell death pathways, and why degeneration is specific to DA neurons and why the degeneration is progressive remain enigmatic. Broad goal of our work is therefore to elucidate the mechanisms underlying specific and progressive DA neuron degeneration in PD. Our new Drosophila model of PD ⎯Fer2 gene loss-of-function mutation⎯ is unusually well suited to address these questions. Fer2 mutants exhibit specific and progressive death of brain DA neurons as well as severe locomotor defects and short life span. Strikingly, the death of DA neuron is initiated in a small cluster of Fer2-expressing DA neurons and subsequently propagates to Fer2-negative DA neurons. We therefore propose a novel two-step model of the neurodegeneration in PD: primary cell death occurs in a specific subset of dopamindegic neurons that are genetically defined, and subsequently the failure of the neuronal connectivity triggers and propagates secondary cell death to remaining DA neurons. In this research, we will test this hypothesis and investigate the underlying molecular mechanisms. This will be the first study to examine circuit-dependency in DA neuron degeneration. Our approach will use a combination of non-biased genomic techniques and candidate-based screening, in addition to the powerful Drosophila genetic toolbox. Furthermore, to test this hypothesis beyond the Drosophila model, we will establish new mouse models of PD that exhibit progressive DA neuron degeneration. Outcome of this research will likely revolutionize the understanding of PD pathogenesis and open an avenue toward the discovery of effective therapy strategies against PD.
Max ERC Funding
1 518 960 €
Duration
Start date: 2013-06-01, End date: 2018-05-31
Project acronym 5HT-OPTOGENETICS
Project Optogenetic Analysis of Serotonin Function in the Mammalian Brain
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2009-AdG
Summary Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Summary
Serotonin (5-HT) is implicated in a wide spectrum of brain functions and disorders. However, its functions remain controversial and enigmatic. We suggest that past work on the 5-HT system have been significantly hampered by technical limitations in the selectivity and temporal resolution of the conventional pharmacological and electrophysiological methods that have been applied. We therefore propose to apply novel optogenetic methods that will allow us to overcome these limitations and thereby gain new insight into the biological functions of this important molecule. In preliminary studies, we have demonstrated that we can deliver exogenous proteins specifically to 5-HT neurons using viral vectors. Our objectives are to (1) record, (2) stimulate and (3) silence the activity of 5-HT neurons with high molecular selectivity and temporal precision by using genetically-encoded sensors, activators and inhibitors of neural function. These tools will allow us to monitor and control the 5-HT system in real-time in freely-behaving animals and thereby to establish causal links between information processing in 5-HT neurons and specific behaviors. In combination with quantitative behavioral assays, we will use this approach to define the role of 5-HT in sensory, motor and cognitive functions. The significance of the work is three-fold. First, we will establish a new arsenal of tools for probing the physiological and behavioral functions of 5-HT neurons. Second, we will make definitive tests of major hypotheses of 5-HT function. Third, we will have possible therapeutic applications. In this way, the proposed work has the potential for a major impact in research on the role of 5-HT in brain function and dysfunction.
Max ERC Funding
2 318 636 €
Duration
Start date: 2010-07-01, End date: 2015-12-31
Project acronym 5HTCircuits
Project Modulation of cortical circuits and predictive neural coding by serotonin
Researcher (PI) Zachary Mainen
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Summary
Serotonin (5-HT) is a central neuromodulator and a major target of therapeutic psychoactive drugs, but relatively little is known about how it modulates information processing in neural circuits. The theory of predictive coding postulates that the brain combines raw bottom-up sensory information with top-down information from internal models to make perceptual inferences about the world. We hypothesize, based on preliminary data and prior literature, that a role of 5-HT in this process is to report prediction errors and promote the suppression and weakening of erroneous internal models. We propose that it does this by inhibiting top-down relative to bottom-up cortical information flow. To test this hypothesis, we propose a set of experiments in mice performing olfactory perceptual tasks. Our specific aims are: (1) We will test whether 5-HT neurons encode sensory prediction errors. (2) We will test their causal role in using predictive cues to guide perceptual decisions. (3) We will characterize how 5-HT influences the encoding of sensory information by neuronal populations in the olfactory cortex and identify the underlying circuitry. (4) Finally, we will map the effects of 5-HT across the whole brain and use this information to target further causal manipulations to specific 5-HT projections. We accomplish these aims using state-of-the-art optogenetic, electrophysiological and imaging techniques (including 9.4T small-animal functional magnetic resonance imaging) as well as psychophysical tasks amenable to quantitative analysis and computational theory. Together, these experiments will tackle multiple facets of an important general computational question, bringing to bear an array of cutting-edge technologies to address with unprecedented mechanistic detail how 5-HT impacts neural coding and perceptual decision-making.
Max ERC Funding
2 486 074 €
Duration
Start date: 2016-01-01, End date: 2020-12-31
Project acronym A-FRO
Project Actively Frozen - contextual modulation of freezing and its neuronal basis
Researcher (PI) Marta de Aragão Pacheco Moita
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Consolidator Grant (CoG), LS5, ERC-2018-COG
Summary When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Summary
When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behavior in rodents, but how contextual information is integrated to guide this choice is still far from understood. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices that depend on the social and spatial environment, and the fly’s internal state. Further, identification of looming detector neurons was recently reported and we identified the descending command neurons, DNp09, responsible for freezing in the fly. Knowing the sensory input and descending output for looming-evoked freezing, two environmental factors that modulate its expression, and using a genetically tractable system affording the use of large sample sizes, places us in an unique position to understand how a information about a threat is integrated with cues from the environment to guide the choice of whether to freeze (our goal). To assess how social information impinges on the circuit for freezing, we will examine the sensory inputs and neuromodulators that mediate this process, mapping their connections to DNp09 neurons (Aim 1). We ask whether learning is required for the spatial modulation of freezing, which cues flies are using to discriminate different places and which brain circuits mediate this process (Aim 2). Finally, we will study how activity of DNp09 neurons drives freezing (Aim 3). This project will provide a comprehensive understanding of the mechanism of freezing and its modulation by the environment, from single neurons to behaviour.
Max ERC Funding
1 969 750 €
Duration
Start date: 2019-02-01, End date: 2024-01-31
Project acronym ACCENT
Project Unravelling the architecture and the cartography of the human centriole
Researcher (PI) Paul, Philippe, Desiré GUICHARD
Host Institution (HI) UNIVERSITE DE GENEVE
Call Details Starting Grant (StG), LS1, ERC-2016-STG
Summary The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Summary
The centriole is the largest evolutionary conserved macromolecular structure responsible for building centrosomes and cilia or flagella in many eukaryotes. Centrioles are critical for the proper execution of important biological processes ranging from cell division to cell signaling. Moreover, centriolar defects have been associated to several human pathologies including ciliopathies and cancer. This state of facts emphasizes the importance of understanding centriole biogenesis. The study of centriole formation is a deep-rooted question, however our current knowledge on its molecular organization at high resolution remains fragmented and limited. In particular, exquisite details of the overall molecular architecture of the human centriole and in particular of its central core region are lacking to understand the basis of centriole organization and function. Resolving this important question represents a challenge that needs to be undertaken and will undoubtedly lead to groundbreaking advances. Another important question to tackle next is to develop innovative methods to enable the nanometric molecular mapping of centriolar proteins within distinct architectural elements of the centriole. This missing information will be key to unravel the molecular mechanisms behind centriolar organization.
This research proposal aims at building a cartography of the human centriole by elucidating its molecular composition and architecture. To this end, we will combine the use of innovative and multidisciplinary techniques encompassing spatial proteomics, cryo-electron tomography, state-of-the-art microscopy and in vitro assays and to achieve a comprehensive molecular and structural view of the human centriole. All together, we expect that these advances will help understand basic principles underlying centriole and cilia formation as well as might have further relevance for human health.
Max ERC Funding
1 498 965 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym activeFly
Project Circuit mechanisms of self-movement estimation during walking
Researcher (PI) M Eugenia CHIAPPE
Host Institution (HI) FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD
Call Details Starting Grant (StG), LS5, ERC-2017-STG
Summary The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Summary
The brain evolves, develops, and operates in the context of animal movements. As a consequence, fundamental brain functions such as spatial perception and motor control critically depend on the precise knowledge of the ongoing body motion. An accurate internal estimate of self-movement is thought to emerge from sensorimotor integration; nonetheless, which circuits perform this internal estimation, and exactly how motor-sensory coordination is implemented within these circuits are basic questions that remain to be poorly understood. There is growing evidence suggesting that, during locomotion, motor-related and visual signals interact at early stages of visual processing. In mammals, however, it is not clear what the function of this interaction is. Recently, we have shown that a population of Drosophila optic-flow processing neurons —neurons that are sensitive to self-generated visual flow, receives convergent visual and walking-related signals to form a faithful representation of the fly’s walking movements. Leveraging from these results, and combining quantitative analysis of behavior with physiology, optogenetics, and modelling, we propose to investigate circuit mechanisms of self-movement estimation during walking. We will:1) use cell specific manipulations to identify what cells are necessary to generate the motor-related activity in the population of visual neurons, 2) record from the identified neurons and correlate their activity with specific locomotor parameters, and 3) perturb the activity of different cell-types within the identified circuits to test their role in the dynamics of the visual neurons, and on the fly’s walking behavior. These experiments will establish unprecedented causal relationships among neural activity, the formation of an internal representation, and locomotor control. The identified sensorimotor principles will establish a framework that can be tested in other scenarios or animal systems with implications both in health and disease.
Max ERC Funding
1 500 000 €
Duration
Start date: 2017-11-01, End date: 2022-10-31
Project acronym ACTOMYO
Project Mechanisms of actomyosin-based contractility during cytokinesis
Researcher (PI) Ana Costa Xavier de Carvalho
Host Institution (HI) INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR-IBMC
Call Details Starting Grant (StG), LS3, ERC-2014-STG
Summary Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Summary
Cytokinesis completes cell division by partitioning the contents of the mother cell to the two daughter cells. This process is accomplished through the assembly and constriction of a contractile ring, a complex actomyosin network that remains poorly understood on the molecular level. Research in cytokinesis has overwhelmingly focused on signaling mechanisms that dictate when and where the contractile ring is assembled. By contrast, the research I propose here addresses fundamental questions about the structural and functional properties of the contractile ring itself. We will use the nematode C. elegans to exploit the power of quantitative live imaging assays in an experimentally tractable metazoan organism. The early C. elegans embryo is uniquely suited to the study of the contractile ring, as cells dividing perpendicularly to the imaging plane provide a full end-on view of the contractile ring throughout constriction. This greatly facilitates accurate measurements of constriction kinetics, ring width and thickness, and levels as well as dynamics of fluorescently-tagged contractile ring components. Combining image-based assays with powerful molecular replacement technology for structure-function studies, we will 1) determine the contribution of branched and non-branched actin filament populations to contractile ring formation; 2) explore its ultra-structural organization in collaboration with a world expert in electron microcopy; 3) investigate how the contractile ring network is dynamically remodeled during constriction with the help of a novel laser microsurgery assay that has uncovered a remarkably robust ring repair mechanism; and 4) use a targeted RNAi screen and phenotype profiling to identify new components of actomyosin contractile networks. The results from this interdisciplinary project will significantly enhance our mechanistic understanding of cytokinesis and other cellular processes that involve actomyosin-based contractility.
Max ERC Funding
1 499 989 €
Duration
Start date: 2015-07-01, End date: 2020-06-30
Project acronym ADIPODIF
Project Adipocyte Differentiation and Metabolic Functions in Obesity and Type 2 Diabetes
Researcher (PI) Christian Wolfrum
Host Institution (HI) EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Call Details Starting Grant (StG), LS6, ERC-2007-StG
Summary Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Summary
Obesity associated disorders such as T2D, hypertension and CVD, commonly referred to as the “metabolic syndrome”, are prevalent diseases of industrialized societies. Deranged adipose tissue proliferation and differentiation contribute significantly to the development of these metabolic disorders. Comparatively little however is known, about how these processes influence the development of metabolic disorders. Using a multidisciplinary approach, I plan to elucidate molecular mechanisms underlying the altered adipocyte differentiation and maturation in different models of obesity associated metabolic disorders. Special emphasis will be given to the analysis of gene expression, postranslational modifications and lipid molecular species composition. To achieve this goal, I am establishing several novel methods to isolate pure primary preadipocytes including a new animal model that will allow me to monitor preadipocytes, in vivo and track their cellular fate in the context of a complete organism. These systems will allow, for the first time to study preadipocyte biology, in an in vivo setting. By monitoring preadipocyte differentiation in vivo, I will also be able to answer the key questions regarding the development of preadipocytes and examine signals that induce or inhibit their differentiation. Using transplantation techniques, I will elucidate the genetic and environmental contributions to the progression of obesity and its associated metabolic disorders. Furthermore, these studies will integrate a lipidomics approach to systematically analyze lipid molecular species composition in different models of metabolic disorders. My studies will provide new insights into the mechanisms and dynamics underlying adipocyte differentiation and maturation, and relate them to metabolic disorders. Detailed knowledge of these mechanisms will facilitate development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.
Max ERC Funding
1 607 105 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym AGRISCENTS
Project Scents and sensibility in agriculture: exploiting specificity in herbivore- and pathogen-induced plant volatiles for real-time crop monitoring
Researcher (PI) Theodoor Turlings
Host Institution (HI) UNIVERSITE DE NEUCHATEL
Call Details Advanced Grant (AdG), LS9, ERC-2017-ADG
Summary Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Summary
Plants typically release large quantities of volatiles in response to attack by herbivores or pathogens. I may claim to have contributed to various breakthroughs in this research field, including the discovery that the volatile blends induced by different attackers are astonishingly specific, resulting in characteristic, readily distinguishable odour blends. Using maize as our model plant, I wish to take several leaps forward in our understanding of this signal specificity and use this knowledge to develop sensors for the real-time detection of crop pests and diseases. For this, three interconnected work-packages will aim to:
• Develop chemical analytical techniques and statistical models to decipher the odorous vocabulary of plants, and to create a complete inventory of “odour-prints” for a wide range of herbivore-plant and pathogen-plant combinations, including simultaneous infestations.
• Develop and optimize nano-mechanical sensors for the detection of specific plant volatile mixtures. For this, we will initially adapt a prototype sensor that has been successfully developed for the detection of cancer-related volatiles in human breath.
• Genetically manipulate maize plants to release a unique blend of root-produced volatiles upon herbivory. For this, we will engineer gene cassettes that combine recently identified P450 (CYP) genes from poplar with inducible, root-specific promoters from maize. This will result in maize plants that, in response to pest attack, release easy-to-detect aldoximes and nitriles from their roots.
In short, by investigating and manipulating the specificity of inducible odour blends we will generate the necessary knowhow to develop a novel odour-detection device. The envisioned sensor technology will permit real-time monitoring of the pests and enable farmers to apply crop protection treatments at the right time and in the right place.
Max ERC Funding
2 498 086 €
Duration
Start date: 2018-09-01, End date: 2023-08-31
Project acronym Amygdala Circuits
Project Amygdala Circuits for Appetitive Conditioning
Researcher (PI) Andreas Luthi
Host Institution (HI) FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION
Call Details Advanced Grant (AdG), LS5, ERC-2014-ADG
Summary The project outlined here addresses the fundamental question how the brain encodes and controls behavior. While we have a reasonable understanding of the role of entire brain areas in such processes, and of mechanisms at the molecular and synaptic levels, there is a big gap in our knowledge of how behavior is controlled at the level of defined neuronal circuits.
In natural environments, chances for survival depend on learning about possible aversive and appetitive outcomes and on the appropriate behavioral responses. Most studies addressing the underlying mechanisms at the level of neuronal circuits have focused on aversive learning, such as in Pavlovian fear conditioning. Understanding how activity in defined neuronal circuits mediates appetitive learning, as well as how these circuitries are shared and interact with aversive learning circuits, is a central question in the neuroscience of learning and memory and the focus of this grant application.
Using a multidisciplinary approach in mice, combining behavioral, in vivo and in vitro electrophysiological, imaging, optogenetic and state-of-the-art viral circuit tracing techniques, we aim at dissecting the neuronal circuitry of appetitive Pavlovian conditioning with a focus on the amygdala, a key brain region important for both aversive and appetitive learning. Ultimately, elucidating these mechanisms at the level of defined neurons and circuits is fundamental not only for an understanding of memory processes in the brain in general, but also to inform a mechanistic approach to psychiatric conditions associated with amygdala dysfunction and dysregulated emotional responses including anxiety and mood disorders.
Summary
The project outlined here addresses the fundamental question how the brain encodes and controls behavior. While we have a reasonable understanding of the role of entire brain areas in such processes, and of mechanisms at the molecular and synaptic levels, there is a big gap in our knowledge of how behavior is controlled at the level of defined neuronal circuits.
In natural environments, chances for survival depend on learning about possible aversive and appetitive outcomes and on the appropriate behavioral responses. Most studies addressing the underlying mechanisms at the level of neuronal circuits have focused on aversive learning, such as in Pavlovian fear conditioning. Understanding how activity in defined neuronal circuits mediates appetitive learning, as well as how these circuitries are shared and interact with aversive learning circuits, is a central question in the neuroscience of learning and memory and the focus of this grant application.
Using a multidisciplinary approach in mice, combining behavioral, in vivo and in vitro electrophysiological, imaging, optogenetic and state-of-the-art viral circuit tracing techniques, we aim at dissecting the neuronal circuitry of appetitive Pavlovian conditioning with a focus on the amygdala, a key brain region important for both aversive and appetitive learning. Ultimately, elucidating these mechanisms at the level of defined neurons and circuits is fundamental not only for an understanding of memory processes in the brain in general, but also to inform a mechanistic approach to psychiatric conditions associated with amygdala dysfunction and dysregulated emotional responses including anxiety and mood disorders.
Max ERC Funding
2 497 200 €
Duration
Start date: 2016-01-01, End date: 2020-12-31