Project acronym DIAG-CANCER
Project Diagnosis, Screening and Monitoring of Cancer Diseases via Exhaled Breath Using an Array of Nanosensors
Researcher (PI) Hossam Haick
Host Institution (HI) TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Cancer is rapidly becoming the greatest health hazard of our days. The most widespread cancers, are lung cancer (LC), breast cancer (BC), colorectal cancer (CC), and prostate cancer (PC). The impact of the various techniques used for diagnosis, screening and monitoring
these cancers is either uncertain and/or inconvenient for the patients. This proposal aims to create a low-cost, easy-to-use and noninvasive screening method for LC, BC, CC, and PC based on breath testing with a novel nanosensors approach. With this in mind, we propose to:
(a) modify an array of nanosensors based on Au nanoparticles for obtaining highly-sensitive detection levels of breath biomarkers of cancer; and
(b) investigate the use of the developed array in a clinical study.
Towards this end, we will collect suitable breath samples from patients and healthy controls in a clinical trial and test the feasibility of the device to detect LC, BC, CC, and PC, also in the presence of other diseases.
We will then investigate possible ways to identify the stage of the disease, monitor the response to cancer
treatment, and to identify cancer subtypes. Further, we propose that the device can be used for monitoring of cancer patients during and after treatment. The chemical nature of the cancer biomarkers will be identified through spectrometry techniques.
The proposed approach would be used outside specialist settings and could considerably lessen the burden on the health budgets, both through the low cost of the proposed all-inclusive cancer test, and through earlier and, hence, more cost-effective cancer treatment.
Summary
Cancer is rapidly becoming the greatest health hazard of our days. The most widespread cancers, are lung cancer (LC), breast cancer (BC), colorectal cancer (CC), and prostate cancer (PC). The impact of the various techniques used for diagnosis, screening and monitoring
these cancers is either uncertain and/or inconvenient for the patients. This proposal aims to create a low-cost, easy-to-use and noninvasive screening method for LC, BC, CC, and PC based on breath testing with a novel nanosensors approach. With this in mind, we propose to:
(a) modify an array of nanosensors based on Au nanoparticles for obtaining highly-sensitive detection levels of breath biomarkers of cancer; and
(b) investigate the use of the developed array in a clinical study.
Towards this end, we will collect suitable breath samples from patients and healthy controls in a clinical trial and test the feasibility of the device to detect LC, BC, CC, and PC, also in the presence of other diseases.
We will then investigate possible ways to identify the stage of the disease, monitor the response to cancer
treatment, and to identify cancer subtypes. Further, we propose that the device can be used for monitoring of cancer patients during and after treatment. The chemical nature of the cancer biomarkers will be identified through spectrometry techniques.
The proposed approach would be used outside specialist settings and could considerably lessen the burden on the health budgets, both through the low cost of the proposed all-inclusive cancer test, and through earlier and, hence, more cost-effective cancer treatment.
Max ERC Funding
1 200 000 €
Duration
Start date: 2011-01-01, End date: 2014-12-31
Project acronym DYNAMIT
Project Deep Tissue Optoacoustic Imaging for Tracking of Dynamic Molecular and Functional Events
Researcher (PI) Daniel Razansky
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary The ability to visualize biological processes in living organisms continuously, instead of at discrete time points, holds a great promise for studies of functional and molecular events, disease progression and treatment monitoring. Optical spectrum is particularly attractive for biological interrogations as it can impart highly versatile contrast of cellular and sub-cellular function as well as employ highly specific contrast agents and markers not available for other modalities. However, technical limitations arising from intense light scattering in living tissues bound the main-stream of high resolution optical imaging applications to microscopic studies at shallow depths that do not allow the exploration of the full potential of novel classes of agents for volumetric imaging of entire organs, small animals or human tissues.
To overcome limitations of the current imaging techniques, this proposal aims to develop a novel high performance optoacoustic imaging technology and explore its groundbreaking potential for neuroimaging and monitoring of cardiovascular disease. I will undertake a substantial technological step that will bring optoacoustic imaging to a real time (video rate) high resolution performance level the like of which has not existed so far. The resulting technique will be able to image several millimeters to centimeters into living small animals and potentially humans, with both high spatial resolution and sensitivity, being independent of photon scattering. This will make it suitable for attaining high dynamic contrast in intact tissues and an ideal candidate for both intrinsic and targeted biomarker-based imaging. It is hypothesized that these unparalleled imaging capabilities will allow observations of new classes of dynamic interactions at different time scales, from relatively slow varying inflammation-related molecular events to video rate visualization of neuronal activity in deep brain regions, otherwise invisible with other imaging methods.
Summary
The ability to visualize biological processes in living organisms continuously, instead of at discrete time points, holds a great promise for studies of functional and molecular events, disease progression and treatment monitoring. Optical spectrum is particularly attractive for biological interrogations as it can impart highly versatile contrast of cellular and sub-cellular function as well as employ highly specific contrast agents and markers not available for other modalities. However, technical limitations arising from intense light scattering in living tissues bound the main-stream of high resolution optical imaging applications to microscopic studies at shallow depths that do not allow the exploration of the full potential of novel classes of agents for volumetric imaging of entire organs, small animals or human tissues.
To overcome limitations of the current imaging techniques, this proposal aims to develop a novel high performance optoacoustic imaging technology and explore its groundbreaking potential for neuroimaging and monitoring of cardiovascular disease. I will undertake a substantial technological step that will bring optoacoustic imaging to a real time (video rate) high resolution performance level the like of which has not existed so far. The resulting technique will be able to image several millimeters to centimeters into living small animals and potentially humans, with both high spatial resolution and sensitivity, being independent of photon scattering. This will make it suitable for attaining high dynamic contrast in intact tissues and an ideal candidate for both intrinsic and targeted biomarker-based imaging. It is hypothesized that these unparalleled imaging capabilities will allow observations of new classes of dynamic interactions at different time scales, from relatively slow varying inflammation-related molecular events to video rate visualization of neuronal activity in deep brain regions, otherwise invisible with other imaging methods.
Max ERC Funding
1 452 650 €
Duration
Start date: 2010-10-01, End date: 2015-09-30
Project acronym PEARL
Project Priming epithelial cell activation to regenerate the lung
Researcher (PI) Melanie Königshoff
Host Institution (HI) HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary Chronic obstructive pulmonary disease (COPD), a global health problem, will be the third leading cause of death by 2020. No effective therapy exists for COPD, which is characterized by a progressive loss of lung tissue, in particular functional alveolar epithelium, due to the inability of the lung to regenerate. Thus, regeneration of functional lung tissue would be a tremendous step forward, which has not been demonstrated as of yet.
The alveolar epithelium is essential for normal lung function and composed of alveolar type I (ATI) and type II (ATII) cells. ATII cells serve as progenitors for alveolar epithelial restoration via differentiation into ATI cells. Induction of lung regeneration requires a tight interplay between initiating and differentiating factors acting on the alveolar epithelium.
The overall aim of this proposal is to explore the regenerative potential of the adult human lung, driven by the alveolar epithelium. We will utilize an ex vivo lung regeneration model, characterize ATI/II cells in diseased lungs, and explore novel initiating and differentiating factors in vivo and ex vivo.
WNT/²-catenin signaling is a promising initiating factor for lung regeneration. We have recently demonstrated a crucial role of WNT/²-catenin signaling in alveolar epithelial cell repair in lung disease. Further, embryos lacking WNT2/2b expression exhibited complete lung agenesis, demonstrating the requirement of WNT/²-catenin signaling in lung generation. We will explore WNT/²-catenin signaling in ATI/II cells, and the regenerative potential thereof. We will analyze the ATI/II cell phenotype in mouse and human COPD specimen, to identify novel differentiation factors facilitating lung regeneration.
We will consolidate our findings by testing the therapeutic applicability of initiating and differentiating factors in COPD in our ex vivo human lung regeneration model. This will lead to reliable and validated results that will be successfully translated into the clinic.
Summary
Chronic obstructive pulmonary disease (COPD), a global health problem, will be the third leading cause of death by 2020. No effective therapy exists for COPD, which is characterized by a progressive loss of lung tissue, in particular functional alveolar epithelium, due to the inability of the lung to regenerate. Thus, regeneration of functional lung tissue would be a tremendous step forward, which has not been demonstrated as of yet.
The alveolar epithelium is essential for normal lung function and composed of alveolar type I (ATI) and type II (ATII) cells. ATII cells serve as progenitors for alveolar epithelial restoration via differentiation into ATI cells. Induction of lung regeneration requires a tight interplay between initiating and differentiating factors acting on the alveolar epithelium.
The overall aim of this proposal is to explore the regenerative potential of the adult human lung, driven by the alveolar epithelium. We will utilize an ex vivo lung regeneration model, characterize ATI/II cells in diseased lungs, and explore novel initiating and differentiating factors in vivo and ex vivo.
WNT/²-catenin signaling is a promising initiating factor for lung regeneration. We have recently demonstrated a crucial role of WNT/²-catenin signaling in alveolar epithelial cell repair in lung disease. Further, embryos lacking WNT2/2b expression exhibited complete lung agenesis, demonstrating the requirement of WNT/²-catenin signaling in lung generation. We will explore WNT/²-catenin signaling in ATI/II cells, and the regenerative potential thereof. We will analyze the ATI/II cell phenotype in mouse and human COPD specimen, to identify novel differentiation factors facilitating lung regeneration.
We will consolidate our findings by testing the therapeutic applicability of initiating and differentiating factors in COPD in our ex vivo human lung regeneration model. This will lead to reliable and validated results that will be successfully translated into the clinic.
Max ERC Funding
1 291 670 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym RESISTOME
Project Towards an individualised therapy and prevention of multi-drug resistant disease
Researcher (PI) Susanne Häußler
Host Institution (HI) HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Call Details Starting Grant (StG), LS7, ERC-2010-StG_20091118
Summary In this proposal the PIs medical microbiology background and previous internationally acknowledged work on molecular persistence mechanism of the gram-negative bacterial pathogen Pseudomonas aeruginosa is exploited towards a novel approach that could change the current paradigm of antibiotic resistance testing. Emerging resistance towards antimicrobials marks this decade and the lack of new therapy options especially against gram-negative pathogens underscores the need for optimisation of current diagnostics, therapies and prevention of the spread of these organisms.
The overall objective of this proposal is to apply a multi-disciplinary approach that combines clinical microbiology, state-of-the-art research on molecular resistance mechanisms, next generation-sequencing and array technology to uncover all genetic determinants of antibiotic resistance and to apply research towards the development of innovative molecular diagnostic platforms for rapid detection of resistance in order to accomplish individualised infection control measures, to reduce morbidity and mortality of the patients and to significantly reduce health care costs. The project will be performed at the Helmholtz Centre for Infection Research in Braunschweig which harbors a vast scientific and instrumental infrastructure and is perfectly suited for this type of pioneer research. Molecular diagnostics does not only provide a fast prediction of resistance based on the bacteria´s genotype but when performed directly in patients specimens has promise to transform medical microbiological diagnostics.
Summary
In this proposal the PIs medical microbiology background and previous internationally acknowledged work on molecular persistence mechanism of the gram-negative bacterial pathogen Pseudomonas aeruginosa is exploited towards a novel approach that could change the current paradigm of antibiotic resistance testing. Emerging resistance towards antimicrobials marks this decade and the lack of new therapy options especially against gram-negative pathogens underscores the need for optimisation of current diagnostics, therapies and prevention of the spread of these organisms.
The overall objective of this proposal is to apply a multi-disciplinary approach that combines clinical microbiology, state-of-the-art research on molecular resistance mechanisms, next generation-sequencing and array technology to uncover all genetic determinants of antibiotic resistance and to apply research towards the development of innovative molecular diagnostic platforms for rapid detection of resistance in order to accomplish individualised infection control measures, to reduce morbidity and mortality of the patients and to significantly reduce health care costs. The project will be performed at the Helmholtz Centre for Infection Research in Braunschweig which harbors a vast scientific and instrumental infrastructure and is perfectly suited for this type of pioneer research. Molecular diagnostics does not only provide a fast prediction of resistance based on the bacteria´s genotype but when performed directly in patients specimens has promise to transform medical microbiological diagnostics.
Max ERC Funding
1 479 487 €
Duration
Start date: 2010-11-01, End date: 2015-10-31