Project acronym 2D4QT
Project 2D Materials for Quantum Technology
Researcher (PI) Christoph STAMPFER
Host Institution (HI) RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Call Details Consolidator Grant (CoG), PE3, ERC-2018-COG
Summary Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Summary
Since its discovery, graphene has been indicated as a promising platform for quantum technologies (QT). The number of theoretical proposal dedicated to this vision has grown steadily, exploring a wide range of directions, ranging from spin and valley qubits, to topologically-protected states. The experimental confirmation of these ideas lagged so far significantly behind, mostly because of material quality problems. The quality of graphene-based devices has however improved dramatically in the past five years, thanks to the advent of the so-called van der Waals (vdW) heteostructures - artificial solids formed by mechanically stacking layers of different two dimensional (2D) materials, such as graphene, hexagonal boron nitride and transition metal dichalcogenides. These new advances open now finally the door to put several of those theoretical proposals to test.
The goal of this project is to assess experimentally the potential of graphene-based heterostructures for QT applications. Specifically, I will push the development of an advanced technological platform for vdW heterostructures, which will allow to give quantitative answers to the following open questions: i) what are the relaxation and coherence times of spin and valley qubits in isotopically purified bilayer graphene (BLG); ii) what is the efficiency of a Cooper-pair splitter based on BLG; and iii) what are the characteristic energy scales of topologically protected quantum states engineered in graphene-based heterostructures.
At the end of this project, I aim at being in the position of saying whether graphene is the horse-worth-betting-on predicted by theory, or whether it still hides surprises in terms of fundamental physics. The technological advancements developed in this project for integrating nanostructured layers into vdW heterostructures will reach even beyond this goal, opening the door to new research directions and possible applications.
Max ERC Funding
1 806 250 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym 2D–SYNETRA
Project Two-dimensional colloidal nanostructures - Synthesis and electrical transport
Researcher (PI) Christian Klinke
Host Institution (HI) UNIVERSITAET HAMBURG
Call Details Starting Grant (StG), PE4, ERC-2012-StG_20111012
Summary We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Summary
We propose to develop truly two-dimensional continuous materials and two-dimensional monolayer films composed of individual nanocrystals by the comparatively fast, inexpensive, and scalable colloidal synthesis method. The materials’ properties will be studied in detail, especially regarding their (photo-) electrical transport. This will allow developing new types of device structures, such as Coulomb blockade and field enhancement based transistors.
Recently, we demonstrated the possibility to synthesize in a controlled manner truly two-dimensional colloidal nanostructures. We will investigate their formation mechanism, synthesize further materials as “nanosheets”, develop methodologies to tune their geometrical properties, and study their (photo-) electrical properties.
Furthermore, we will use the Langmuir-Blodgett method to deposit highly ordered monolayers of monodisperse nanoparticles. Such structures show interesting transport properties governed by Coulomb blockade effects known from individual nanoparticles. This leads to semiconductor-like behavior in metal nanoparticle films. The understanding of the electric transport in such “multi-tunnel devices” is still very limited. Thus, we will investigate this concept in detail and take it to its limits. Beside improvement of quality and exchange of material we will tune the nanoparticles’ size and shape in order to gain a deeper understanding of the electrical properties of supercrystallographic assemblies. Furthermore, we will develop device concepts for diode and transistor structures which take into account the novel properties of the low-dimensional assemblies.
Nanosheets and monolayers of nanoparticles truly follow the principle of building devices by the bottom-up approach and allow electric transport measurements in a 2D regime. Highly ordered nanomaterial systems possess easy and reliably to manipulate electronic properties what make them interesting for future (inexpensive) electronic devices.
Max ERC Funding
1 497 200 €
Duration
Start date: 2013-02-01, End date: 2019-01-31
Project acronym 2F4BIODYN
Project Two-Field Nuclear Magnetic Resonance Spectroscopy for the Exploration of Biomolecular Dynamics
Researcher (PI) Fabien Ferrage
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2011-StG_20101014
Summary The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Summary
The paradigm of the structure-function relationship in proteins is outdated. Biological macromolecules and supramolecular assemblies are highly dynamic objects. Evidence that their motions are of utmost importance to their functions is regularly identified. The understanding of the physical chemistry of biological processes at an atomic level has to rely not only on the description of structure but also on the characterization of molecular motions.
The investigation of protein motions will be undertaken with a very innovative methodological approach in nuclear magnetic resonance relaxation. In order to widen the ranges of frequencies at which local motions in proteins are probed, we will first use and develop new techniques for a prototype shuttle system for the measurement of relaxation at low fields on a high-field NMR spectrometer. Second, we will develop a novel system: a set of low-field NMR spectrometers designed as accessories for high-field spectrometers. Used in conjunction with the shuttle, this system will offer (i) the sensitivity and resolution (i.e. atomic level information) of a high-field spectrometer (ii) the access to low fields of a relaxometer and (iii) the ability to measure a wide variety of relaxation rates with high accuracy. This system will benefit from the latest technology in homogeneous permanent magnet development to allow a control of spin systems identical to that of a high-resolution probe. This new apparatus will open the way to the use of NMR relaxation at low fields for the refinement of protein motions at an atomic scale.
Applications of this novel approach will focus on the bright side of protein dynamics: (i) the largely unexplored dynamics of intrinsically disordered proteins, and (ii) domain motions in large proteins. In both cases, we will investigate a series of diverse protein systems with implications in development, cancer and immunity.
Max ERC Funding
1 462 080 €
Duration
Start date: 2012-01-01, End date: 2017-12-31
Project acronym 3-TOP
Project Exploring the physics of 3-dimensional topological insulators
Researcher (PI) Laurens Wigbolt Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2010-AdG_20100224
Summary Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Summary
Topological insulators constitute a novel class of materials where the topological details of the bulk band structure induce a robust surface state on the edges of the material. While transport data for 2-dimensional topological insulators have recently become available, experiments on their 3-dimensional counterparts are mainly limited to photoelectron spectroscopy. At the same time, a plethora of interesting novel physical phenomena have been predicted to occur in such systems.
In this proposal, we sketch an approach to tackle the transport and magnetic properties of the surface states in these materials. This starts with high quality layer growth, using molecular beam epitaxy, of bulk layers of HgTe, Bi2Se3 and Bi2Te3, which are the prime candidates to show the novel physics expected in this field. The existence of the relevant surface states will be assessed spectroscopically, but from there on research will focus on fabricating and characterizing nanostructures designed to elucidate the transport and magnetic properties of the topological surfaces using electrical, optical and scanning probe techniques. Apart from a general characterization of the Dirac band structure of the surface states, research will focus on the predicted magnetic monopole-like response of the system to an electrical test charge. In addition, much effort will be devoted to contacting the surface state with superconducting and magnetic top layers, with the final aim of demonstrating Majorana fermion behavior. As a final benefit, growth of thin high quality thin Bi2Se3 or Bi2Te3 layers could allow for a demonstration of the (2-dimensional) quantum spin Hall effect at room temperature - offering a road map to dissipation-less transport for the semiconductor industry.
Max ERC Funding
2 419 590 €
Duration
Start date: 2011-04-01, End date: 2016-03-31
Project acronym 3D-BioMat
Project Deciphering biomineralization mechanisms through 3D explorations of mesoscale crystalline structure in calcareous biomaterials
Researcher (PI) VIRGINIE CHAMARD
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE3, ERC-2016-COG
Summary The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Summary
The fundamental 3D-BioMat project aims at providing a biomineralization model to explain the formation of microscopic calcareous single-crystals produced by living organisms. Although these crystals present a wide variety of shapes, associated to various organic materials, the observation of a nanoscale granular structure common to almost all calcareous crystallizing organisms, associated to an extended crystalline coherence, underlies a generic biomineralization and assembly process. A key to building realistic scenarios of biomineralization is to reveal the crystalline architecture, at the mesoscale, (i. e., over a few granules), which none of the existing nano-characterization tools is able to provide.
3D-BioMat is based on the recognized PI’s expertise in the field of synchrotron coherent x-ray diffraction microscopy. It will extend the PI’s disruptive pioneering microscopy formalism, towards an innovative high-throughput approach able at giving access to the 3D mesoscale image of the crystalline properties (crystal-line coherence, crystal plane tilts and strains) with the required flexibility, nanoscale resolution, and non-invasiveness.
This achievement will be used to timely reveal the generics of the mesoscale crystalline structure through the pioneering explorations of a vast variety of crystalline biominerals produced by the famous Pinctada mar-garitifera oyster shell, and thereby build a realistic biomineralization scenario.
The inferred biomineralization pathways, including both physico-chemical pathways and biological controls, will ultimately be validated by comparing the mesoscale structures produced by biomimetic samples with the biogenic ones. Beyond deciphering one of the most intriguing questions of material nanosciences, 3D-BioMat may contribute to new climate models, pave the way for new routes in material synthesis and supply answers to the pearl-culture calcification problems.
Max ERC Funding
1 966 429 €
Duration
Start date: 2017-03-01, End date: 2022-02-28
Project acronym 4-TOPS
Project Four experiments in Topological Superconductivity.
Researcher (PI) Laurens Molenkamp
Host Institution (HI) JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Call Details Advanced Grant (AdG), PE3, ERC-2016-ADG
Summary Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Summary
Topological materials have developed rapidly in recent years, with my previous ERC-AG project 3-TOP playing a major role in this development. While so far no bulk topological superconductor has been unambiguously demonstrated, their properties can be studied in a very flexible manner by inducing superconductivity through the proximity effect into the surface or edge states of a topological insulator. In 4-TOPS we will explore the possibilities of this approach in full, and conduct a thorough study of induced superconductivity in both two and three dimensional HgTe based topological insulators. The 4 avenues we will follow are:
-SQUID based devices to investigate full phase dependent spectroscopy of the gapless Andreev bound state by studying their Josephson radiation and current-phase relationships.
-Experiments aimed at providing unambiguous proof of localized Majorana states in TI junctions by studying tunnelling transport into such states.
-Attempts to induce superconductivity in Quantum Hall states with the aim of creating a chiral topological superconductor. These chiral superconductors host Majorana fermions at their edges, which, at least in the case of a single QH edge mode, follow non-Abelian statistics and are therefore promising for explorations in topological quantum computing.
-Studies of induced superconductivity in Weyl semimetals, a completely unexplored state of matter.
Taken together, these four sets of experiments will greatly enhance our understanding of topological superconductivity, which is not only a subject of great academic interest as it constitutes the study of new phases of matter, but also has potential application in the field of quantum information processing.
Max ERC Funding
2 497 567 €
Duration
Start date: 2017-06-01, End date: 2022-05-31
Project acronym a SMILE
Project analyse Soluble + Membrane complexes with Improved LILBID Experiments
Researcher (PI) Nina Morgner
Host Institution (HI) JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN
Call Details Starting Grant (StG), PE4, ERC-2013-StG
Summary Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Summary
Crucial processes within cells depend on specific non-covalent interactions which mediate the assembly of proteins and other biomolecules. Deriving structural information to understand the function of these complex systems is the primary goal of Structural Biology.
In this application, the recently developed LILBID method (Laser Induced Liquid Bead Ion Desorption) will be optimized for investigation of macromolecular complexes with a mass accuracy two orders of magnitude better than in 1st generation spectrometers.
Controlled disassembly of the multiprotein complexes in the mass spectrometric analysis while keeping the 3D structure intact, will allow for the determination of complex stoichiometry and connectivity of the constituting proteins. Methods for such controlled disassembly will be developed in two separate units of the proposed LILBID spectrometer, in a collision chamber and in a laser dissociation chamber, enabling gas phase dissociation of protein complexes and removal of excess water/buffer molecules. As a third unit, a chamber allowing determination of ion mobility (IM) will be integrated to determine collisional cross sections (CCS). From CCS, unique information regarding the spatial arrangement of proteins in complexes or subcomplexes will then be obtainable from LILBID.
The proposed design of the new spectrometer will offer fundamentally new possibilities for the investigation of non-covalent RNA, soluble and membrane protein complexes, as well as broadening the applicability of non-covalent MS towards supercomplexes.
Max ERC Funding
1 264 477 €
Duration
Start date: 2014-02-01, End date: 2019-01-31
Project acronym A-LIFE
Project The asymmetry of life: towards a unified view of the emergence of biological homochirality
Researcher (PI) Cornelia MEINERT
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2018-STG
Summary What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Summary
What is responsible for the emergence of homochirality, the almost exclusive use of one enantiomer over its mirror image? And what led to the evolution of life’s homochiral biopolymers, DNA/RNA, proteins and lipids, where all the constituent monomers exhibit the same handedness?
Based on in-situ observations and laboratory studies, we propose that this handedness occurs when chiral biomolecules are synthesized asymmetrically through interaction with circularly polarized photons in interstellar space. The ultimate goal of this project will be to demonstrate how the diverse set of heterogeneous enantioenriched molecules, available from meteoritic impact, assembles into homochiral pre-biopolymers, by simulating the evolutionary stages on early Earth. My recent research has shown that the central chiral unit of RNA, ribose, forms readily under simulated comet conditions and this has provided valuable new insights into the accessibility of precursors of genetic material in interstellar environments. The significance of this project arises due to the current lack of experimental demonstration that amino acids, sugars and lipids can simultaneously and asymmetrically be synthesized by a universal physical selection process.
A synergistic methodology will be developed to build a unified theory for the origin of all chiral biological building blocks and their assembly into homochiral supramolecular entities. For the first time, advanced analyses of astrophysical-relevant samples, asymmetric photochemistry triggered by circularly polarized synchrotron and laser sources, and chiral amplification due to polymerization processes will be combined. Intermediates and autocatalytic reaction kinetics will be monitored and supported by quantum calculations to understand the underlying processes. A unified theory on the asymmetric formation and self-assembly of life’s biopolymers is groundbreaking and will impact the whole conceptual foundation of the origin of life.
Max ERC Funding
1 500 000 €
Duration
Start date: 2019-04-01, End date: 2024-03-31
Project acronym ABIOS
Project ABIOtic Synthesis of RNA: an investigation on how life started before biology existed
Researcher (PI) Guillaume STIRNEMANN
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE4, ERC-2017-STG
Summary The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Summary
The emergence of life is one of the most fascinating and yet largely unsolved questions in the natural sciences, and thus a significant challenge for scientists from many disciplines. There is growing evidence that ribonucleic acid (RNA) polymers, which are capable of genetic information storage and self-catalysis, were involved in the early forms of life. But despite recent progress, RNA synthesis without biological machineries is very challenging. The current project aims at understanding how to synthesize RNA in abiotic conditions. I will solve problems associated with three critical aspects of RNA formation that I will rationalize at a molecular level: (i) accumulation of precursors, (ii) formation of a chemical bond between RNA monomers, and (iii) tolerance for alternative backbone sugars or linkages. Because I will study problems ranging from the formation of chemical bonds up to the stability of large biopolymers, I propose an original computational multi-scale approach combining techniques that range from quantum calculations to large-scale all-atom simulations, employed together with efficient enhanced-sampling algorithms, forcefield improvement, cutting-edge analysis methods and model development.
My objectives are the following:
1 • To explain why the poorly-understood thermally-driven process of thermophoresis can contribute to the accumulation of dilute precursors.
2 • To understand why linking RNA monomers with phosphoester bonds is so difficult, to understand the molecular mechanism of possible catalysts and to suggest key improvements.
3 • To rationalize the molecular basis for RNA tolerance for alternative backbone sugars or linkages that have probably been incorporated in abiotic conditions.
This unique in-silico laboratory setup should significantly impact our comprehension of life’s origin by overcoming major obstacles to RNA abiotic formation, and in addition will reveal significant orthogonal outcomes for (bio)technological applications.
Max ERC Funding
1 497 031 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym ABSOLUTESPIN
Project Absolute Spin Dynamics in Quantum Materials
Researcher (PI) Christian Reinhard Ast
Host Institution (HI) MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Call Details Consolidator Grant (CoG), PE3, ERC-2015-CoG
Summary One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Summary
One of the greatest challenges in exploiting the electron spin for information processing is that it is not a conserved quantity like the electron charge. In addition, spin lifetimes are rather short and correspondingly coherence is quickly lost. This challenge culminates in the coherent manipulation and detection of information from a single spin. Except in a few special systems, so far, single spins cannot be manipulated coherently on the atomic scale, while spin coherence times can only be measured on spin ensembles. A new concept is needed for coherence measurements on arbitrary single spins. Here, the principal investigator (PI) will combine a novel time- and spin-resolved low-temperature scanning tunneling microscope (STM) with the concept of pulsed electron paramagnetic resonance. With this unique and innovative setup, he will be able to address long-standing problems, such as relaxation and coherence times of arbitrary single spin systems on the atomic scale as well as individual spin interactions with the immediate surroundings. Spin readout will be realized through the detection of the absolute spin polarization in the tunneling current by a superconducting tip based on the Meservey-Tedrow-Fulde effect, which the PI has recently demonstrated for the first time in STM. For the coherent excitation, a specially designed pulsed GHz light source will be implemented. The goal is to better understand the spin dynamics and coherence times of single spin systems as well as the spin interactions involved in the decay mechanisms. This will have direct impact on the feasibility of quantum spin information processing with single spin systems on different decoupling surfaces and their scalability at the atomic level. A successful demonstration will enhance the detection limit of spins by several orders of magnitude and fill important missing links in the understanding of spin dynamics and quantum computing with single spins.
Max ERC Funding
2 469 136 €
Duration
Start date: 2016-07-01, End date: 2021-06-30