Project acronym 2D-TOPSENSE
Project Tunable optoelectronic devices by strain engineering of 2D semiconductors
Researcher (PI) Andres CASTELLANOS
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Summary
The goal of 2D-TOPSENSE is to exploit the remarkable stretchability of two-dimensional semiconductors to fabricate optoelectronic devices where strain is used as an external knob to tune their properties.
While bulk semiconductors tend to break under strains larger than 1.5%, 2D semiconductors (such as MoS2) can withstand deformations of up to 10-20% before rupture. This large breaking strength promises a great potential of 2D semiconductors as ‘straintronic’ materials, whose properties can be adjusted by applying a deformation to their lattice. In fact, recent theoretical works predicted an interesting physical phenomenon: a tensile strain-induced semiconductor-to-metal transition in 2D semiconductors. By tensioning single-layer MoS2 from 0% up to 10%, its electronic band structure is expected to undergo a continuous transition from a wide direct band-gap of 1.8 eV to a metallic behavior. This unprecedented large strain-tunability will undoubtedly have a strong impact in a wide range of optoelectronic applications such as photodetectors whose cut-off wavelength is tuned by varying the applied strain or atomically thin light modulators.
To date, experimental works on strain engineering have been mostly focused on fundamental studies, demonstrating part of the potential of 2D semiconductors in straintronics, but they have failed to exploit strain engineering to add extra functionalities to optoelectronic devices. In 2D-TOPSENSE I will go beyond the state of the art in straintronics by designing and fabricating optoelectronic devices whose properties and performance can be tuned by means of applying strain. 2D-TOPSENSE will focus on photodetectors with a tunable bandwidth and detectivity, light emitting devices whose emission wavelength can be adjusted, light modulators based on 2D semiconductors such as transition metal dichalcogenides or black phosphorus and solar funnels capable of directing the photogenerated charge carriers towards a specific position.
Max ERC Funding
1 930 437 €
Duration
Start date: 2018-03-01, End date: 2023-02-28
Project acronym 3D-CAP
Project 3D micro-supercapacitors for embedded electronics
Researcher (PI) David Sarinn PECH
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Consolidator Grant (CoG), PE7, ERC-2017-COG
Summary The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Summary
The realization of high-performance micro-supercapacitors is currently a big challenge but the ineluctable applications requiring such miniaturized energy storage devices are continuously emerging, from wearable electronic gadgets to wireless sensor networks. Although they store less energy than micro-batteries, micro-supercapacitors can be charged and discharged very rapidly and exhibit a quasi-unlimited lifetime. The global scientific research is consequently largely focused on the improvement of their capacitance and energetic performances. However, to date, they are still far from being able to power sensors or electronic components.
Here I propose a 3D paradigm shift of micro-supercapacitor design to ensure increased energy storage capacities. Hydrous ruthenium dioxide (RuO2) is a pseudocapacitive material for supercapacitor electrode well-known for its high capacitance. A thin-film of ruthenium will be deposited by atomic layer deposition (ALD), followed by an electrochemical oxidation process, onto a high-surface-area 3D current collector prepared via an ingenious dynamic template built with hydrogen bubbles. The structural features of these 3D architectures will be controllably tailored by the processing methodologies. These electrodes will be combined with an innovative electrolyte in solid form (a protic ionogel) able to operate over an extended cell voltage. In a parallel investigation, we will develop a fundamental understanding of electrochemical reactions occurring at the nanoscale with a FIB-patterned (Focused Ion Beam) RuO2 nano-supercapacitor. The resulting 3D micro-supercapacitors should display extremely high power, long lifetime and – for the first time – energy densities competing or even exceeding that of micro-batteries. As a key achievement, prototypes will be designed using a new concept based on a self-adaptative micro-supercapacitors matrix, which arranges itself according to the global amount of energy stored.
Max ERC Funding
1 673 438 €
Duration
Start date: 2018-04-01, End date: 2023-03-31
Project acronym 3DCellPhase-
Project In situ Structural Analysis of Molecular Crowding and Phase Separation
Researcher (PI) Julia MAHAMID
Host Institution (HI) EUROPEAN MOLECULAR BIOLOGY LABORATORY
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Summary
This proposal brings together two fields in biology, namely the emerging field of phase-separated assemblies in cell biology and state-of-the-art cellular cryo-electron tomography, to advance our understanding on a fundamental, yet illusive, question: the molecular organization of the cytoplasm.
Eukaryotes organize their biochemical reactions into functionally distinct compartments. Intriguingly, many, if not most, cellular compartments are not membrane enclosed. Rather, they assemble dynamically by phase separation, typically triggered upon a specific event. Despite significant progress on reconstituting such liquid-like assemblies in vitro, we lack information as to whether these compartments in vivo are indeed amorphous liquids, or whether they exhibit structural features such as gels or fibers. My recent work on sample preparation of cells for cryo-electron tomography, including cryo-focused ion beam thinning, guided by 3D correlative fluorescence microscopy, shows that we can now prepare site-specific ‘electron-transparent windows’ in suitable eukaryotic systems, which allow direct examination of structural features of cellular compartments in their cellular context. Here, we will use these techniques to elucidate the structural principles and cytoplasmic environment driving the dynamic assembly of two phase-separated compartments: Stress granules, which are RNA bodies that form rapidly in the cytoplasm upon cellular stress, and centrosomes, which are sites of microtubule nucleation. We will combine these studies with a quantitative description of the crowded nature of cytoplasm and of its local variations, to provide a direct readout of the impact of excluded volume on molecular assembly in living cells. Taken together, these studies will provide fundamental insights into the structural basis by which cells form biochemical compartments.
Max ERC Funding
1 228 125 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym 4SUNS
Project 4-Colours/2-Junctions of III-V semiconductors on Si to use in electronics devices and solar cells
Researcher (PI) María Nair LOPEZ MARTINEZ
Host Institution (HI) UNIVERSIDAD AUTONOMA DE MADRID
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Summary
It was early predicted by M. Green and coeval colleagues that dividing the solar spectrum into narrow ranges of colours is the most efficient manner to convert solar energy into electrical power. Multijunction solar cells are the current solution to this challenge, which have reached over 30% conversion efficiencies by stacking 3 junctions together. However, the large fabrication costs and time hinders their use in everyday life. It has been shown that highly mismatched alloy (HMA) materials provide a powerful playground to achieve at least 3 different colour absorption regions that enable optimised energy conversion with just one junction. Combining HMA-based junctions with standard Silicon solar cells will rocket solar conversion efficiency at a reduced price. To turn this ambition into marketable devices, several efforts are still needed and few challenges must be overcome.
4SUNS is a revolutionary approach for the development of HMA materials on Silicon technology, which will bring highly efficient multi-colour solar cells costs below current multijunction devices. The project will develop the technology of HMA materials on Silicon via material synthesis opening a new technology for the future. The understanding and optimization of highly mismatched alloy materials-using GaAsNP alloy- will provide building blocks for the fabrication of laboratory-size 4-colours/2-junctions solar cells.
Using a molecular beam epitaxy system, 4SUNS will grow 4-colours/2-junctions structure as well as it will manufacture the final devices. Structural and optoelectronic characterizations will carry out to determine the quality of the materials and the solar cells characteristic to obtain a competitive product. These new solar cells are competitive products to breakthrough on the solar energy sector solar cells and allowing Europe to take leadership on high efficiency solar cells.
Max ERC Funding
1 499 719 €
Duration
Start date: 2018-02-01, End date: 2023-01-31
Project acronym AAMDDR
Project DNA damage response and genome stability: The role of ATM, ATR and the Mre11 complex
Researcher (PI) Vincenzo Costanzo
Host Institution (HI) CANCER RESEARCH UK LBG
Call Details Starting Grant (StG), LS1, ERC-2007-StG
Summary Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Summary
Chromosomal DNA is continuously subjected to exogenous and endogenous damaging insults. In the presence of DNA damage cells activate a multi-faceted checkpoint response that delays cell cycle progression and promotes DNA repair. Failures in this response lead to genomic instability, the main feature of cancer cells. Several cancer-prone human syndromes including the Ataxia teleangiectasia (A-T), the A-T Like Disorder (ATLD) and the Seckel Syndrome reflect defects in the specific genes of the DNA damage response such as ATM, MRE11 and ATR. DNA damage response pathways are poorly understood at biochemical level in vertebrate organisms. We have established a cell-free system based on Xenopus laevis egg extract to study molecular events underlying DNA damage response. This is the first in vitro system that recapitulates different aspects of the DNA damage response in vertebrates. Using this system we propose to study the biochemistry of the ATM, ATR and the Mre11 complex dependent DNA damage response. In particular we will: 1) Dissect the signal transduction pathway that senses DNA damage and promotes cell cycle arrest and DNA damage repair; 2) Analyze at molecular level the role of ATM, ATR, Mre11 in chromosomal DNA replication and mitosis during normal and stressful conditions; 3) Identify substrates of the ATM and ATR dependent DNA damage response using an innovative screening procedure.
Max ERC Funding
1 000 000 €
Duration
Start date: 2008-07-01, End date: 2013-06-30
Project acronym ATG9_SOLVES_IT
Project In vitro high resolution reconstitution of autophagosome nucleation and expansion catalyzed byATG9
Researcher (PI) Sharon TOOZE
Host Institution (HI) THE FRANCIS CRICK INSTITUTE LIMITED
Call Details Advanced Grant (AdG), LS1, ERC-2017-ADG
Summary Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Summary
Autophagy is a conserved, lysosomal-mediated pathway required for cell homeostasis and survival. It is controlled by the master regulators of energy (AMPK) and growth (TORC1) and mediated by the ATG (autophagy) proteins. Deregulation of autophagy is implicated in cancer, immunity, infection, aging and neurodegeneration. Autophagosomes form and expand using membranes from the secretory and endocytic pathways but how this occurs is not understood. ATG9, the only transmembrane ATG protein traffics through the cell in vesicles, and is essential for rapid initiation and expansion of the membranes which form the autophagosome. Crucially, how ATG9 functions is unknown. I will determine how ATG9 initiates the formation and expansion of the autophagosome by amino acid starvation through a molecular dissection of proteins resident in ATG9 vesicles which modulate the composition and property of the initiating membrane. I will employ high resolution light and electron microscopy to characterize the nucleation of the autophagosome, proximity-specific biotinylation and quantitative Mass Spectrometry to uncover the proteome required for the function of the ATG9, and optogenetic tools to acutely regulate signaling lipids. Lastly, with our tools and knowledge I will develop an in vitro reconstitution system to define at a molecular level how ATG9 vesicle proteins, membranes that interact with ATG9 vesicles, and other accessory ATG components nucleate and form an autophagosome. In vitro reconstitution of autophagosomes will be assayed biochemically, and by correlative light and cryo-EM and cryo-EM tomography, while functional reconstitution of autophagy will be tested by selective cargo recruitment. The development of a reconstituted system and identification proteins and lipids which are key components for autophagosome formation will provide a means to identify a new generation of targets for translational work leading to manipulation of autophagy for disease related therapies.
Max ERC Funding
2 121 055 €
Duration
Start date: 2018-07-01, End date: 2023-06-30
Project acronym AutoClean
Project Cell-free reconstitution of autophagy to dissect molecular mechanisms
Researcher (PI) Claudine Simone Kraft
Host Institution (HI) UNIVERSITAETSKLINIKUM FREIBURG
Call Details Consolidator Grant (CoG), LS1, ERC-2017-COG
Summary Autophagy, a lysosomal degradation pathway in which the cell digests its own components, is an essential biological pathway that promotes organismal health and longevity and helps combat cancer and neurodegenerative diseases. Accordingly, the 2016 Nobel Prize in Physiology or Medicine was awarded for research in autophagy. Although autophagy has been extensively studied from yeast to mammals, the molecular events that underlie its induction and progression remain elusive. A highly conserved protein kinase, Atg1, plays a unique and essential role in initiating autophagy, yet despite this pivotal importance it has taken over twenty years for its first downstream target to be discovered. However, whilst our identification of the autophagy related membrane protein Atg9 as the first Atg1 substrate is an important advance, the molecular mechanisms that enable the extensive remodelling of cellular membranes that occurs during autophagy is still completely undefined. A detailed knowledge of the inputs and outputs of the Atg1 kinase will enable us to provide a definitive mechanistic understanding of autophagy. We have devised a novel permeabilized cell assay that reconstitutes the pathway in vitro, allowing us to recapitulate key steps in the autophagic process and thereby determine how the individual steps that lead up to autophagy are controlled. We will use this system to dissect the functional role of Atg1 kinase in autophagosome-vacuole fusion (Objective 1), and to determine the origin of the autophagic membrane and the role of Atg1 in expanding these (Objective 2). To reveal how Atg1/ULK1 kinase is activated in mammalian cells, we will apply the unique and carefully tailored synthetic in vivo approaches that we have recently developed (Objective 3). By focusing on the activation of the Atg1 kinase and the molecular events that it executes, we will be able to explain its central role in regulating the autophagic process and define the mechanistic steps in the pathway.
Summary
Autophagy, a lysosomal degradation pathway in which the cell digests its own components, is an essential biological pathway that promotes organismal health and longevity and helps combat cancer and neurodegenerative diseases. Accordingly, the 2016 Nobel Prize in Physiology or Medicine was awarded for research in autophagy. Although autophagy has been extensively studied from yeast to mammals, the molecular events that underlie its induction and progression remain elusive. A highly conserved protein kinase, Atg1, plays a unique and essential role in initiating autophagy, yet despite this pivotal importance it has taken over twenty years for its first downstream target to be discovered. However, whilst our identification of the autophagy related membrane protein Atg9 as the first Atg1 substrate is an important advance, the molecular mechanisms that enable the extensive remodelling of cellular membranes that occurs during autophagy is still completely undefined. A detailed knowledge of the inputs and outputs of the Atg1 kinase will enable us to provide a definitive mechanistic understanding of autophagy. We have devised a novel permeabilized cell assay that reconstitutes the pathway in vitro, allowing us to recapitulate key steps in the autophagic process and thereby determine how the individual steps that lead up to autophagy are controlled. We will use this system to dissect the functional role of Atg1 kinase in autophagosome-vacuole fusion (Objective 1), and to determine the origin of the autophagic membrane and the role of Atg1 in expanding these (Objective 2). To reveal how Atg1/ULK1 kinase is activated in mammalian cells, we will apply the unique and carefully tailored synthetic in vivo approaches that we have recently developed (Objective 3). By focusing on the activation of the Atg1 kinase and the molecular events that it executes, we will be able to explain its central role in regulating the autophagic process and define the mechanistic steps in the pathway.
Max ERC Funding
1 955 666 €
Duration
Start date: 2018-06-01, End date: 2023-05-31
Project acronym BACKUP
Project Unveiling the relationship between brain connectivity and function by integrated photonics
Researcher (PI) Lorenzo PAVESI
Host Institution (HI) UNIVERSITA DEGLI STUDI DI TRENTO
Call Details Advanced Grant (AdG), PE7, ERC-2017-ADG
Summary I will address the fundamental question of which is the role of neuron activity and plasticity in information elaboration and storage in the brain. I, together with an interdisciplinary team, will develop a hybrid neuro-morphic computing platform. Integrated photonic circuits will be interfaced to both electronic circuits and neuronal circuits (in vitro experiments) to emulate brain functions and develop schemes able to supplement (backup) neuronal functions. The photonic network is based on massive reconfigurable matrices of nonlinear nodes formed by microring resonators, which enter in regime of self-pulsing and chaos by positive optical feedback. These networks resemble human brain. I will push this analogy further by interfacing the photonic network with neurons making hybrid network. By using optogenetics, I will control the synaptic strengthen-ing and the neuron activity. Deep learning algorithms will model the biological network functionality, initial-ly within a separate artificial network and, then, in an integrated hybrid artificial-biological network.
My project aims at:
1. Developing a photonic integrated reservoir-computing network (RCN);
2. Developing dynamic memories in photonic integrated circuits using RCN;
3. Developing hybrid interfaces between a neuronal network and a photonic integrated circuit;
4. Developing a hybrid electronic, photonic and biological network that computes jointly;
5. Addressing neuronal network activity by photonic RCN to simulate in vitro memory storage and retrieval;
6. Elaborating the signal from RCN and neuronal circuits in order to cope with plastic changes in pathologi-cal brain conditions such as amnesia and epilepsy.
The long-term vision is that hybrid neuromorphic photonic networks will (a) clarify the way brain thinks, (b) compute beyond von Neumann, and (c) control and supplement specific neuronal functions.
Summary
I will address the fundamental question of which is the role of neuron activity and plasticity in information elaboration and storage in the brain. I, together with an interdisciplinary team, will develop a hybrid neuro-morphic computing platform. Integrated photonic circuits will be interfaced to both electronic circuits and neuronal circuits (in vitro experiments) to emulate brain functions and develop schemes able to supplement (backup) neuronal functions. The photonic network is based on massive reconfigurable matrices of nonlinear nodes formed by microring resonators, which enter in regime of self-pulsing and chaos by positive optical feedback. These networks resemble human brain. I will push this analogy further by interfacing the photonic network with neurons making hybrid network. By using optogenetics, I will control the synaptic strengthen-ing and the neuron activity. Deep learning algorithms will model the biological network functionality, initial-ly within a separate artificial network and, then, in an integrated hybrid artificial-biological network.
My project aims at:
1. Developing a photonic integrated reservoir-computing network (RCN);
2. Developing dynamic memories in photonic integrated circuits using RCN;
3. Developing hybrid interfaces between a neuronal network and a photonic integrated circuit;
4. Developing a hybrid electronic, photonic and biological network that computes jointly;
5. Addressing neuronal network activity by photonic RCN to simulate in vitro memory storage and retrieval;
6. Elaborating the signal from RCN and neuronal circuits in order to cope with plastic changes in pathologi-cal brain conditions such as amnesia and epilepsy.
The long-term vision is that hybrid neuromorphic photonic networks will (a) clarify the way brain thinks, (b) compute beyond von Neumann, and (c) control and supplement specific neuronal functions.
Max ERC Funding
2 499 825 €
Duration
Start date: 2018-11-01, End date: 2023-10-31
Project acronym BioMatrix
Project Structural Biology of Exopolysaccharide Secretion in Bacterial Biofilms
Researcher (PI) Petya Violinova KRASTEVA
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), LS1, ERC-2017-STG
Summary Bacterial biofilm formation is a paramount developmental process in both Gram-positive and Gram-negative species and in many pathogens has been associated with processes of horizontal gene transfer, antibiotic resistance development and pathogen persistence. Bacterial biofilms are collaborative sessile macrocolonies embedded in complex extracellular matrix that secures both mechanical resistance and a medium for intercellular exchange.
Biogenesis platforms for the secretion of biofilm matrix components - many of which controlled directly or indirectly by the intracellular second messenger c-di-GMP - are important determinants for biofilm formation and bacterial disease, and therefore present compelling targets for the development of novel therapeutics. During my Ph.D. and post-doctoral work I studied the structure and function of c-di-GMP-sensing protein factors controling extracellular matrix production by DNA-binding at the transcription initiation level or by inside-out signalling mechanisms at the cell envelope, as well as membrane exporters involved directly in downstream matrix component secretion.
Here, I propose to apply my expertise in microbiology, protein science and structural biology to study the structure and function of exopolysaccharide secretion systems in Gram-negative species. Using Pseudomonas aeruginosa, Vibrio spp. and Escherichia coli as model organisms, my team will aim to reveal the global architecture and individual building components of several expolysaccharide-producing protein megacomplexes. We will combine X-ray crystallography, biophysical and biochemical assays, electron microscopy and in cellulo functional studies to provide a comprehensive view of extracellular matrix production that spans the different resolution levels and presents molecular blueprints for the development of novel anti-infectives. Over the last year I have laid the foundation of these studies and have demonstrated the overall feasibility of the project.
Summary
Bacterial biofilm formation is a paramount developmental process in both Gram-positive and Gram-negative species and in many pathogens has been associated with processes of horizontal gene transfer, antibiotic resistance development and pathogen persistence. Bacterial biofilms are collaborative sessile macrocolonies embedded in complex extracellular matrix that secures both mechanical resistance and a medium for intercellular exchange.
Biogenesis platforms for the secretion of biofilm matrix components - many of which controlled directly or indirectly by the intracellular second messenger c-di-GMP - are important determinants for biofilm formation and bacterial disease, and therefore present compelling targets for the development of novel therapeutics. During my Ph.D. and post-doctoral work I studied the structure and function of c-di-GMP-sensing protein factors controling extracellular matrix production by DNA-binding at the transcription initiation level or by inside-out signalling mechanisms at the cell envelope, as well as membrane exporters involved directly in downstream matrix component secretion.
Here, I propose to apply my expertise in microbiology, protein science and structural biology to study the structure and function of exopolysaccharide secretion systems in Gram-negative species. Using Pseudomonas aeruginosa, Vibrio spp. and Escherichia coli as model organisms, my team will aim to reveal the global architecture and individual building components of several expolysaccharide-producing protein megacomplexes. We will combine X-ray crystallography, biophysical and biochemical assays, electron microscopy and in cellulo functional studies to provide a comprehensive view of extracellular matrix production that spans the different resolution levels and presents molecular blueprints for the development of novel anti-infectives. Over the last year I have laid the foundation of these studies and have demonstrated the overall feasibility of the project.
Max ERC Funding
1 499 901 €
Duration
Start date: 2018-08-01, End date: 2023-07-31
Project acronym blackQD
Project Optoelectronic of narrow band gap nanocrystals
Researcher (PI) Emmanuel LHUILLIER
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE7, ERC-2017-STG
Summary Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Summary
Over the past decades, silicon became the most used material for electronic, however its indirect band gap limits its use for optics and optoelectronics. As a result alternatives semiconductor such as III-V and II-VI materials are used to address a broad range of complementary application such as LED, laser diode and photodiode. However in the infrared (IR), the material challenge becomes far more complex.
New IR applications, such as flame detection or night car driving assistance are emerging and request low cost detectors. Current technologies, based on epitaxially grown semiconductors are unlikely to bring a cost disruption and organic electronics, often viewed as the alternative to silicon based materials is ineffective in the mid-IR. The blackQD project aims at transforming colloidal quantum dots (CQD) into the next generation of active material for IR detection. CQD are attracting a high interest because of their size tunable optical features and next challenges is their integration in optoelectronic devices and in particular for IR features.
The project requires a combination of material knowledge, with clean room nanofabrication and IR photoconduction which is unique in Europe. I organize blackQD in three mains parts. The first part relates to the growth of mercury chalcogenides nanocrystals with unique tunable properties in the mid and far-IR. To design devices with enhanced properties, more needs to be known on the electronic structure of these nanomaterials. In part II, I propose to develop original methods to probe static and dynamic aspects of the electronic structure. Finally the main task of the project relates to the design of a new generation of transistors and IR detectors. I propose several geometries of demonstrator which for the first time integrate from the beginning the colloidal nature of the CQD and constrain of IR photodetection. The project more generally aims to develop a tool box for the design of the next generation of low cost IR.
Max ERC Funding
1 499 903 €
Duration
Start date: 2018-02-01, End date: 2023-01-31