Project acronym ACTIVE_NEUROGENESIS
Project Activity-dependent signaling in radial glial cells and their neuronal progeny
Researcher (PI) Colin Akerman
Host Institution (HI) THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Country United Kingdom
Call Details Starting Grant (StG), LS5, ERC-2009-StG
Summary A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Summary
A significant advance in the field of development has been the appreciation that radial glial cells are progenitors and give birth to neurons in the brain. In order to advance this exciting area of biology, we need approaches that combine structural and functional studies of these cells. This is reflected by the emerging realisation that dynamic interactions involving radial glia may be critical for the regulation of their proliferative behaviour. It has been observed that radial glia experience transient elevations in intracellular Ca2+ but the nature of these signals, and the information that they convey, is not known. The inability to observe these cells in vivo and over the course of their development has also meant that basic questions remain unexplored. For instance, how does the behaviour of a radial glial cell at one point in development, influence the final identity of its progeny? I propose to build a research team that will capitalise upon methods we have developed for observing individual radial glia and their progeny in an intact vertebrate nervous system. The visual system of Xenopus Laevis tadpoles offers non-invasive optical access to the brain, making time-lapse imaging of single cells feasible over minutes and weeks. The system s anatomy lends itself to techniques that measure the activity of the cells in a functional sensory network. We will use this to examine signalling mechanisms in radial glia and how a radial glial cell s experience influences its proliferative behaviour and the types of neuron it generates. We will also examine the interactions that continue between a radial glial cell and its daughter neurons. Finally, we will explore the relationships that exist within neuronal progeny derived from a single radial glial cell.
Max ERC Funding
1 284 808 €
Duration
Start date: 2010-02-01, End date: 2015-01-31
Project acronym AFRIVAL
Project African river basins: catchment-scale carbon fluxes and transformations
Researcher (PI) Steven Bouillon
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Starting Grant (StG), PE10, ERC-2009-StG
Summary This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Summary
This proposal wishes to fundamentally improve our understanding of the role of tropical freshwater ecosystems in carbon (C) cycling on the catchment scale. It uses an unprecedented combination of state-of-the-art proxies such as stable isotope, 14C and biomarker signatures to characterize organic matter, radiogenic isotope signatures to determine particle residence times, as well as field measurements of relevant biogeochemical processes. We focus on tropical systems since there is a striking lack of data on such systems, even though riverine C transport is thought to be disproportionately high in tropical areas. Furthermore, the presence of landscape-scale contrasts in vegetation (in particular, C3 vs. C4 plants) are an important asset in the use of stable isotopes as natural tracers of C cycling processes on this scale. Freshwater ecosystems are an important component in the global C cycle, and the primary link between terrestrial and marine ecosystems. Recent estimates indicate that ~2 Pg C y-1 (Pg=Petagram) enter freshwater systems, i.e., about twice the estimated global terrestrial C sink. More than half of this is thought to be remineralized before it reaches the coastal zone, and for the Amazon basin this has even been suggested to be ~90% of the lateral C inputs. The question how general these patterns are is a matter of debate, and assessing the mechanisms determining the degree of processing versus transport of organic carbon in lakes and river systems is critical to further constrain their role in the global C cycle. This proposal provides an interdisciplinary approach to describe and quantify catchment-scale C transport and cycling in tropical river basins. Besides conceptual and methodological advances, and a significant expansion of our dataset on C processes in such systems, new data gathered in this project are likely to provide exciting and novel hypotheses on the functioning of freshwater systems and their linkage to the terrestrial C budget.
Max ERC Funding
1 745 262 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym AIM2 INFLAMMASOME
Project Cytosolic recognition of foreign nucleic acids: Molecular and functional characterization of AIM2, a central player in DNA-triggered inflammasome activation
Researcher (PI) Veit Hornung
Host Institution (HI) UNIVERSITATSKLINIKUM BONN
Country Germany
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Summary
Host cytokines, chemokines and type I IFNs are critical effectors of the innate immune response to viral and bacterial pathogens. Several classes of germ-line encoded pattern recognition receptors have been identified, which sense non-self nucleic acids and trigger these responses. Recently NLRP-3, a member of the NOD-like receptor (NLR) family, has been shown to sense endogenous danger signals, environmental insults and the DNA viruses adenovirus and HSV. Activation of NLRP-3 induces the formation of a large multiprotein complex in cells termed inflammasome , which controls the activity of pro-caspase-1 and the maturation of pro-IL-1² and pro-IL18 into their active forms. NLRP-3, however, does not regulate these responses to double stranded cytosolic DNA. We identified the cytosolic protein AIM2 as the missing receptor for cytosolic DNA. AIM2 contains a HIN200 domain, which binds to DNA and a pyrin domain, which associates with the adapter molecule ASC to activate both NF-ºB and caspase-1. Knock down of AIM2 down-regulates caspase-1-mediated IL-1² responses following DNA stimulation or vaccinia virus infection. Collectively, these observations demonstrate that AIM2 forms an inflammasome with the DNA ligand and ASC to activate caspase-1. Our underlying hypothesis for this proposal is that AIM2 plays a central role in host-defence to cytosolic microbial pathogens and also in DNA-triggered autoimmunity. The goals of this research proposal are to further characterize the DNA ligand for AIM2, to explore the molecular mechanisms of AIM2 activation, to define the contribution of AIM2 to host-defence against viral and bacterial pathogens and to assess its function in nucleic acid triggered autoimmune disease. The characterization of AIM2 and its role in innate immunity could open new avenues in the advancement of immunotherapy and treatment of autoimmune disease.
Max ERC Funding
1 727 920 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ANSR
Project Ab initio approach to nuclear structure and reactions (++)
Researcher (PI) Christian Erik Forssen
Host Institution (HI) CHALMERS TEKNISKA HOEGSKOLA AB
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Summary
Today, much interest in several fields of physics is devoted to the study of small, open quantum systems, whose properties are profoundly affected by the environment; i.e., the continuum of decay channels. In nuclear physics, these problems were originally studied in the context of nuclear reactions but their importance has been reestablished with the advent of radioactive-beam physics and the resulting interest in exotic nuclei. In particular, strong theory initiatives in this area of research will be instrumental for the success of the experimental program at the Facility for Antiproton and Ion Research (FAIR) in Germany. In addition, many of the aspects of open quantum systems are also being explored in the rapidly evolving research on ultracold atomic gases, quantum dots, and other nanodevices. A first-principles description of open quantum systems presents a substantial theoretical and computational challenge. However, the current availability of enormous computing power has allowed theorists to make spectacular progress on problems that were previously thought intractable. The importance of computational methods to study quantum many-body systems is stressed in this proposal. Our approach is based on the ab initio no-core shell model (NCSM), which is a well-established theoretical framework aimed originally at an exact description of nuclear structure starting from realistic inter-nucleon forces. A successful completion of this project requires extensions of the NCSM mathematical framework and the development of highly advanced computer codes. The '++' in the project title indicates the interdisciplinary aspects of the present research proposal and the ambition to make a significant impact on connected fields of many-body physics.
Max ERC Funding
1 304 800 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ANTIVIRALRNAI
Project RNAi-mediated viral immunity in insects
Researcher (PI) Maria-Carla Saleh
Host Institution (HI) INSTITUT PASTEUR
Country France
Call Details Starting Grant (StG), LS6, ERC-2009-StG
Summary RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Summary
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA (dsRNA). One of the functions of this pathway is the defense against parasitic nucleic acids: transposons and viruses. Previous results demonstrated that viral infections in Drosophila melanogaster are fought by an antiviral RNAi response and that components of the endocytic pathway are required for dsRNA entry to initiate the RNAi response. Recently we have shown that infected insect cells spread a systemic silencing signal that elicits a protective RNAi-dependent immunity throughout the organism. This suggests that the cell-autonomous RNAi response is insufficient to control a viral infection and that flies also rely on systemic immune response to fight against such infections. As a junior group leader, I will study the mechanisms that mediate the RNAi-based antiviral response in insects. By combining biochemical, cellular, molecular and genomic approaches, both in vivo and in cell culture, I will analyze the mechanisms underlying viral tropism, systemic propagation of the antiviral signal and the basis of the persistence of the antiviral state. Furthermore, I will examine whether the dsRNA-uptake pathway is conserved in mosquitoes and its relationship with viral immunity in that host. This comprehensive approach will tackle how this nucleic acid-based immunity works in insects to generate an anti-viral stage. A better understanding of the role of RNA silencing in insects during virus infection will allow the exploitation of this pathway for improvement of public health related problems such as arbovirus infection and disease.
Max ERC Funding
1 900 000 €
Duration
Start date: 2009-10-01, End date: 2014-12-31
Project acronym ARCHGLASS
Project Archaeometry and Archaeology of Ancient Glass Production as a Source for Ancient Technology and Trade of Raw Materials
Researcher (PI) Patrick Degryse
Host Institution (HI) KATHOLIEKE UNIVERSITEIT LEUVEN
Country Belgium
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Summary
In this project, innovative techniques to reconstruct ancient economies are developed and new insights in the trade and processing of mineral raw materials are gained based on interdisciplinary archaeological and archaeometrical research. An innovative methodology for and a practical provenance database of the primary origin of natron glass from the Hellenistic-Roman world will be established. The project investigates both production and consumer sites of glass raw materials using both typo-chronological and archaeometrical (isotope geochemical) study of finished glass artefacts at consumer sites as well as mineralogical and chemical characterisation of raw glass and mineral resources at primary production sites. Suitable sand resources in the locations described by ancient authors will be identified through geological prospecting on the basis of literature review and field work. Sand and flux (natron) deposits will be mineralogically and geochemically characterised and compared to the results of the archaeological and geochemical investigations of the glass. Through integrated typo-chronological and archaeometrical analysis, the possible occurrence of primary production centres of raw glass outside the known locations in Syro-Palestine and Egypt, particularly in North-Africa, Italy, Spain and Gaul will be critically studied. In this way, historical, archaeological and archaeometrical data are combined, developing new interdisciplinary techniques for innovative archaeological interpretation of glass trade in the Hellenistic-Roman world.
Max ERC Funding
954 960 €
Duration
Start date: 2009-11-01, End date: 2014-10-31
Project acronym ARENA
Project Arrays of entangled atoms
Researcher (PI) Antoine Browaeys
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Country France
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Summary
The goal of this project is to prepare in a deterministic way, and then to characterize, various entangled states of up to 25 individual atoms held in an array of optical tweezers. Such a system provides a new arena to explore quantum entangled states of a large number of particles. Entanglement is the existence of quantum correlations between different parts of a system, and it is recognized as an essential property that distinguishes the quantum and the classical worlds. It is also a resource in various areas of physics, such as quantum information processing, quantum metrology, correlated quantum systems and quantum simulation. In the proposed design, each site is individually addressable, which enables single atom manipulation and detection. This will provide the largest entangled state ever produced and fully characterized at the individual particle level. The experiment will be implemented by combining two crucial novel features, that I was able to demonstrate very recently: first, the manipulation of quantum bits written on long-lived hyperfine ground states of single ultra-cold atoms trapped in microscopic optical tweezers; second, the generation of entanglement by using the strong long-range interactions between Rydberg states. These interactions lead to the so-called dipole blockade , and enable the preparation of various classes of entangled states, such as states carrying only one excitation (W states), and states analogous to Schrödinger s cats (GHZ states). Finally, I will also explore strategies to protect these states against decoherence, developed in the framework of fault-tolerant and topological quantum computing. This project therefore combines an experimental challenge and the exploration of entanglement in a mesoscopic system.
Max ERC Funding
1 449 600 €
Duration
Start date: 2009-12-01, End date: 2014-11-30
Project acronym ATOMION
Project Exploring hybrid quantum systems of ultracold atoms and ions
Researcher (PI) Michael Karl Koehl
Host Institution (HI) RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN
Country Germany
Call Details Starting Grant (StG), PE2, ERC-2009-StG
Summary We propose to investigate hybrid quantum systems composed of ultracold atoms and ions. The mutual interaction of the cold neutral atoms and the trapped ion offers a wealth of interesting new physical problems. They span from ultracold quantum chemistry over new concepts for quantum information processing to genuine quantum many-body physics. We plan to explore aspects of quantum chemistry with ultracold atoms and ions to obtain a full understanding of the interactions in this hybrid system. We will investigate the regime of low energy collisions and search for Feshbach resonances to tune the interaction strength between atoms and ions. Moreover, we will study collective effects in chemical reactions between a Bose-Einstein condensate and a single ion. Taking advantage of the extraordinary properties of the atom-ion mixture quantum information processing with hybrid systems will be performed. In particular, we plan to realize sympathetic ground state cooling of the ion with a Bose-Einstein condensate. When the ion is immersed into the ultracold neutral atom environment the nature of the decoherence will be tailored by tuning properties of the environment: A dissipative quantum phase transition is predicted when the ion is coupled to a one-dimensional Bose gas. Moreover, we plan to realize a scalable hybrid quantum processor composed of a single ion and an array of neutral atoms in an optical lattice. The third direction we will pursue is related to impurity effects in quantum many-body physics. We plan to study transport through a single impurity or atomic quantum dot with the goal of realizing a single atom transistor. A single atom transistor transfers the quantum state of the impurity coherently to a macroscopic neutral atom current. Finally, we plan to observe Anderson s orthogonality catastrophe in which the presence of a single impurity in a quantum gas orthogonalizes the quantum many-body function of a quantum state with respect to the unperturbed one.
Summary
We propose to investigate hybrid quantum systems composed of ultracold atoms and ions. The mutual interaction of the cold neutral atoms and the trapped ion offers a wealth of interesting new physical problems. They span from ultracold quantum chemistry over new concepts for quantum information processing to genuine quantum many-body physics. We plan to explore aspects of quantum chemistry with ultracold atoms and ions to obtain a full understanding of the interactions in this hybrid system. We will investigate the regime of low energy collisions and search for Feshbach resonances to tune the interaction strength between atoms and ions. Moreover, we will study collective effects in chemical reactions between a Bose-Einstein condensate and a single ion. Taking advantage of the extraordinary properties of the atom-ion mixture quantum information processing with hybrid systems will be performed. In particular, we plan to realize sympathetic ground state cooling of the ion with a Bose-Einstein condensate. When the ion is immersed into the ultracold neutral atom environment the nature of the decoherence will be tailored by tuning properties of the environment: A dissipative quantum phase transition is predicted when the ion is coupled to a one-dimensional Bose gas. Moreover, we plan to realize a scalable hybrid quantum processor composed of a single ion and an array of neutral atoms in an optical lattice. The third direction we will pursue is related to impurity effects in quantum many-body physics. We plan to study transport through a single impurity or atomic quantum dot with the goal of realizing a single atom transistor. A single atom transistor transfers the quantum state of the impurity coherently to a macroscopic neutral atom current. Finally, we plan to observe Anderson s orthogonality catastrophe in which the presence of a single impurity in a quantum gas orthogonalizes the quantum many-body function of a quantum state with respect to the unperturbed one.
Max ERC Funding
1 405 000 €
Duration
Start date: 2009-10-01, End date: 2014-09-30
Project acronym BABYLON
Project By the Rivers of Babylon: New Perspectives on Second Temple Judaism from Cuneiform Texts
Researcher (PI) Caroline Waerzeggers
Host Institution (HI) UNIVERSITEIT LEIDEN
Country Netherlands
Call Details Starting Grant (StG), SH6, ERC-2009-StG
Summary This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Summary
This project has the potential to radically change current understanding of cultic and social transformation in the post-exilic temple community of Jerusalem (c. 6th-4th centuries BCE), an important formative phase of ancient Judaism. “BABYLON” draws on recent, ground-breaking advances in the study of cuneiform texts to illuminate the Babylonian environment of the Judean exile, the socio-historical context which gave rise to the transformative era in Second Temple Judaism. In particular, these new data show that the parallels between Babylonian and post-exilic forms of cultic and social organization were substantially more far-reaching than presently recognized in Biblical scholarship. “BABYLON” will study the extent of these similarities and explore the question how Babylonian models could have influenced the restoration effort in Jerusalem.
This goal will be achieved through four sub-projects. P1 will study the social dynamics and intellectual universe of the Babylonian priesthood. P2 will finalize the publication of cuneiform archives of Babylonian priests living in the time of the exile. P3 will identify the exact areas of change in the post-exilic temple community of Jerusalem. P4, the synthesis, will draw from each of these sub-projects to present a comparative study of the Second Temple and contemporary Babylonian models of cultic and social organization, and to propose a strategy of research into the possible routes of transmission between Babylonia and Jerusalem.
The research will be carried out by three team members: the PI (P1 and P4), a PhD in Assyriology (P2) and a post-doctoral researcher in Biblical Studies specialized in the Second Temple period (P3 and P4). The participation of the wider academic community will be invited at two moments in the course of the project, in the form of a workshop and an international conference.
“BABYLON” will adopt an interdisciplinary approach by bringing together Assyriologists and Biblical scholars for a much-needed dialogue, thereby exploding the artificial boundaries that currently exist in the academic landscape between these two fields.
Max ERC Funding
1 200 000 €
Duration
Start date: 2009-09-01, End date: 2015-08-31
Project acronym BBSG
Project Bosnian Bones, Spanish Ghosts: 'Transitional Justice' and the Legal Shaping of Memory after Two Modern Conflicts
Researcher (PI) Sarah Lynn Wastell (Born Haller)
Host Institution (HI) GOLDSMITHS' COLLEGE
Country United Kingdom
Call Details Starting Grant (StG), SH2, ERC-2009-StG
Summary The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Summary
The proposed research entails an ethnographic study of two contemporary cases of post-conflict reconciliation: one, the Bosnian case, where international intervention ended conflict in a stalemate and went on to instigate a decade-long process of transition; and the other, the Spanish case, where a nationally-contrived pact of silence introduced an overnight transition after Franco's death a pact now being broken nearly seventy years after the country's civil war concluded. Both societies witnessed massive violations of international humanitarian law. Both societies are presently exhuming, identifying and re-burying their dead. But their trajectories of transitional justice could not have been more different. This project will investigate how Law shapes cultural memories of wartime atrocity in these contrasting scenarios. How do criminal prosecutions, constitutional reforms, and international rights mechanisms, provide or obfuscate the scales into which histories of violent conflict are framed? Does the systematic re-structuring of legislative and judicial infrastructure stifle recognition of past abuses or does it create the conditions through which such pasts can be confronted? How does Law shape or inflect the cultural politics of memory and memorialisation? And most importantly, how should legal activity be weighted, prioritised and sequenced with other, extra-legal components of peace-building initiatives? The ultimate goal of this project will be to mobilise the findings from the two field-sites to suggest a more nuanced assessment of Law s place in transitional justice. Arguing that disparate historical, cultural and legal contexts require equally distinct approaches towards social healing, the research aims to produce a Post-Conflict Action Framework an architecture of questions and concerns, which, once answered, would point towards context-specific designs for transitional justice programmes in the future.
Max ERC Funding
1 420 000 €
Duration
Start date: 2009-09-01, End date: 2013-08-31