Project acronym BIOTORQUE
Project Probing the angular dynamics of biological systems with the optical torque wrench
Researcher (PI) Francesco Pedaci
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary "The ability to apply forces to single molecules and bio-polymers has fundamentally changed the way we can interact with and understand biological systems. Yet, for many cellular mechanisms, it is rather the torque that is the relevant physical parameter. Excitingly, novel single-molecule techniques that utilize this parameter are now poised to contribute to novel discoveries. Here, I will study the angular dynamical behavior and response to external torque of biological systems at the molecular and cellular levels using the new optical torque wrench that I recently developed.
In a first research line, I will unravel the angular dynamics of the e.coli flagellar motor, a complex and powerful rotary nano-motor that rotates the flagellum in order to propel the bacterium forwards. I will quantitatively study different aspects of torque generation of the motor, aiming to connect evolutionary, dynamical, and structural principles. In a second research line, I will develop an in-vivo manipulation technique based on the transfer of optical torque and force onto novel nano-fabricated particles. This new scanning method will allow me to map physical properties such as the local viscosity inside living cells and the spatial organization and topography of internal membranes, thereby expanding the capabilities of existing techniques towards in-vivo and ultra-low force scanning imaging.
This project is founded on a multidisciplinary approach in which fundamental optics, novel nanoparticle fabrication, and molecular and cellular biology are integrated. It has the potential to answer biophysical questions that have challenged the field for over two decades and to impact fields ranging from single-molecule biophysics to scanning-probe microscopy and nanorheology, provided ERC funding is granted."
Summary
"The ability to apply forces to single molecules and bio-polymers has fundamentally changed the way we can interact with and understand biological systems. Yet, for many cellular mechanisms, it is rather the torque that is the relevant physical parameter. Excitingly, novel single-molecule techniques that utilize this parameter are now poised to contribute to novel discoveries. Here, I will study the angular dynamical behavior and response to external torque of biological systems at the molecular and cellular levels using the new optical torque wrench that I recently developed.
In a first research line, I will unravel the angular dynamics of the e.coli flagellar motor, a complex and powerful rotary nano-motor that rotates the flagellum in order to propel the bacterium forwards. I will quantitatively study different aspects of torque generation of the motor, aiming to connect evolutionary, dynamical, and structural principles. In a second research line, I will develop an in-vivo manipulation technique based on the transfer of optical torque and force onto novel nano-fabricated particles. This new scanning method will allow me to map physical properties such as the local viscosity inside living cells and the spatial organization and topography of internal membranes, thereby expanding the capabilities of existing techniques towards in-vivo and ultra-low force scanning imaging.
This project is founded on a multidisciplinary approach in which fundamental optics, novel nanoparticle fabrication, and molecular and cellular biology are integrated. It has the potential to answer biophysical questions that have challenged the field for over two decades and to impact fields ranging from single-molecule biophysics to scanning-probe microscopy and nanorheology, provided ERC funding is granted."
Max ERC Funding
1 500 000 €
Duration
Start date: 2013-01-01, End date: 2017-12-31
Project acronym CELLO
Project From Cells to Organs on Chips: Development of an Integrative Microfluidic Platform
Researcher (PI) Jean-Louis Viovy
Host Institution (HI) INSTITUT CURIE
Call Details Advanced Grant (AdG), PE3, ERC-2012-ADG_20120216
Summary We shall develop a microfluidic and microsystems toolbox allowing the construction and study of complex cellular assemblies (“tissue or organ mimics on chip”), in a highly controlled and parallelized way. This platform will allow the selection of specific cells from one or several populations, their deterministic positioning and/or connection relative to each other, yielding functional assemblies with a degree of complexity, determinism and physiological realism unavailable to current in vitro systems We shall in particular develop “semi-3D” architectures, reproducing the local 3D arrangement of tissues, but presenting at mesoscale a planar and periodic arrangement facilitating high resolution stimulation and recording. This will provide biologists and clinicians with new experimental models able to bridge the gap between current in vitro systems, in which cells can be observed in parallel at high resolution, but lack the highly ordered architecture present in living systems, and in vivo models, in which observation and stimulation means are more limited. This development will follow a functional approach, and gather competences and concepts from micr-nano-systems, surface science, hydrodynamics, soft matter and biology. We shall validate it on three specific applications, the sorting and study of circulating tumour cells for understanding metastases, the creation of “miniguts”, artificial intestinal tissue, for applications in developmental biology and cancerogenesis, and the in vitro construction of active and connected neuron arrays, for studying the molecular mechanisms of Alzheimer, and signal processing by neuron networks. This platform will also open new routes for drug testing, replacing animal models and reducing the health and economic risk of clinical tests, developmental biology , stem cells research. and regenerative medicine.
Summary
We shall develop a microfluidic and microsystems toolbox allowing the construction and study of complex cellular assemblies (“tissue or organ mimics on chip”), in a highly controlled and parallelized way. This platform will allow the selection of specific cells from one or several populations, their deterministic positioning and/or connection relative to each other, yielding functional assemblies with a degree of complexity, determinism and physiological realism unavailable to current in vitro systems We shall in particular develop “semi-3D” architectures, reproducing the local 3D arrangement of tissues, but presenting at mesoscale a planar and periodic arrangement facilitating high resolution stimulation and recording. This will provide biologists and clinicians with new experimental models able to bridge the gap between current in vitro systems, in which cells can be observed in parallel at high resolution, but lack the highly ordered architecture present in living systems, and in vivo models, in which observation and stimulation means are more limited. This development will follow a functional approach, and gather competences and concepts from micr-nano-systems, surface science, hydrodynamics, soft matter and biology. We shall validate it on three specific applications, the sorting and study of circulating tumour cells for understanding metastases, the creation of “miniguts”, artificial intestinal tissue, for applications in developmental biology and cancerogenesis, and the in vitro construction of active and connected neuron arrays, for studying the molecular mechanisms of Alzheimer, and signal processing by neuron networks. This platform will also open new routes for drug testing, replacing animal models and reducing the health and economic risk of clinical tests, developmental biology , stem cells research. and regenerative medicine.
Max ERC Funding
2 260 000 €
Duration
Start date: 2013-07-01, End date: 2018-06-30
Project acronym CirQys
Project Circuit QED with hybrid electronic states
Researcher (PI) Takis Kontos
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary We propose to develop a new scheme for detecting and manipulating exotic states formed by combinations of conductors with different dimensionalities and/or electronic orders. For that purpose, we will use tools of cavity quantum electrodynamics to study in a very controlled way the interaction of light and this exotic matter.
Our experiments will be implemented with nanowires connected to normal, ferromagnetic or superconducting electrodes embedded in high finesse on-chip superconducting photonic cavities. The experimental technique proposed here will inaugurate a novel method for investigating the spectroscopy and the dynamics of tailored nano-systems.
During the project, we will focus on three key experiments. We will demonstrate the strong coupling between a single spin and cavity photons, bringing spin quantum bits a step closer to scalability. We will probe coherence in Cooper pair splitters using lasing and sub-radiance. Finally, we will probe the non-local nature of Majorana bound states predicted to appear at the edges of topological superconductors via their interaction with cavity photons.
Summary
We propose to develop a new scheme for detecting and manipulating exotic states formed by combinations of conductors with different dimensionalities and/or electronic orders. For that purpose, we will use tools of cavity quantum electrodynamics to study in a very controlled way the interaction of light and this exotic matter.
Our experiments will be implemented with nanowires connected to normal, ferromagnetic or superconducting electrodes embedded in high finesse on-chip superconducting photonic cavities. The experimental technique proposed here will inaugurate a novel method for investigating the spectroscopy and the dynamics of tailored nano-systems.
During the project, we will focus on three key experiments. We will demonstrate the strong coupling between a single spin and cavity photons, bringing spin quantum bits a step closer to scalability. We will probe coherence in Cooper pair splitters using lasing and sub-radiance. Finally, we will probe the non-local nature of Majorana bound states predicted to appear at the edges of topological superconductors via their interaction with cavity photons.
Max ERC Funding
1 456 608 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym D4PARTICLES
Project Statistical physics of dense particle systems in the absence of thermal fluctuations
Researcher (PI) Ludovic Berthier
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary "Frontier research in statistical mechanics and soft condensed matter focuses on systems of ever-increasing complexity. Among these are systems where microscopic dynamics are not controlled by thermal fluctuations, either because the sources of the fluctuations have not a thermal origin, or because “microscopic” sources of fluctuations are altogether absent. Practical applications comprise everyday products such as paints or foodstuff which are soft solids composed of dense suspensions of particles that are too large for thermal fluctuations to play any role. Non-Brownian “active” matter, obtained when particles internally produce motion, represents another growing field with applications in biophysics and soft matter. Because these systems all evolve far from equilibrium, there exists no general framework to tackle these problems theoretically from a fundamental perspective. I will develop a radically new approach to lay the foundations of a detailed theoretical understanding of the physics of a broad but coherent class of materials evolving far from equilibrium. To go beyond phenomenology, I will carry theoretical research to elucidate the physics of particle systems that are simultaneously Dense, Disordered, Driven and Dissipative—D4PARTICLES. By combining numerical analysis of model systems to fully microscopic statistical mechanics analysis, my overall aim is to discover the general principles governing the physics of athermal particle systems far from equilibrium and to reach a complete theoretical understanding and obtain predictive tools regarding the phase behavior, structure and dynamics of D4PARTICLES. Reaching a new level of theoretical understanding of a broad range of materials will impact fundamental research by opening up statistical physics to a whole new class of complex systems and should foster experimental activity towards design and quantitative characterization of large class of disordered solids and soft materials."
Summary
"Frontier research in statistical mechanics and soft condensed matter focuses on systems of ever-increasing complexity. Among these are systems where microscopic dynamics are not controlled by thermal fluctuations, either because the sources of the fluctuations have not a thermal origin, or because “microscopic” sources of fluctuations are altogether absent. Practical applications comprise everyday products such as paints or foodstuff which are soft solids composed of dense suspensions of particles that are too large for thermal fluctuations to play any role. Non-Brownian “active” matter, obtained when particles internally produce motion, represents another growing field with applications in biophysics and soft matter. Because these systems all evolve far from equilibrium, there exists no general framework to tackle these problems theoretically from a fundamental perspective. I will develop a radically new approach to lay the foundations of a detailed theoretical understanding of the physics of a broad but coherent class of materials evolving far from equilibrium. To go beyond phenomenology, I will carry theoretical research to elucidate the physics of particle systems that are simultaneously Dense, Disordered, Driven and Dissipative—D4PARTICLES. By combining numerical analysis of model systems to fully microscopic statistical mechanics analysis, my overall aim is to discover the general principles governing the physics of athermal particle systems far from equilibrium and to reach a complete theoretical understanding and obtain predictive tools regarding the phase behavior, structure and dynamics of D4PARTICLES. Reaching a new level of theoretical understanding of a broad range of materials will impact fundamental research by opening up statistical physics to a whole new class of complex systems and should foster experimental activity towards design and quantitative characterization of large class of disordered solids and soft materials."
Max ERC Funding
1 339 800 €
Duration
Start date: 2012-10-01, End date: 2017-09-30
Project acronym FREQUJOC
Project Frequency-to-current conversion with coherent Josephson crystals
Researcher (PI) Wiebke Guichard
Host Institution (HI) UNIVERSITE GRENOBLE ALPES
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary This project aims at exploring the coherence of Josephson crystals (JC) and to apply this coherence for frequency-to-current conversion. A Josephson crystal can be realized by a Josephson junction chain, formed by repeating a single junction or SQUID in space to form a one-dimensional ladder structure. Such a crystal can show a macroscopic coherent behavior due to the coherent superposition of quantum phase-slips (CQPS), ie the winding of 2 of the superconducting phase-difference occurring on single junctions. This project aims to perform a major breakthrough by addressing the coherence of circuits containing a large number of Josephson junctions. In particular this proposal aims, by novel experiments on Josephson junction chains, to understand the crucial questions of external charge dynamics and dissipation that originates from the many-body effects present in these chains. In order to fight against internal dissipation, I propose novel designs of Josephson junction chains with a disordered or fractal pattern. In addition, I propose to do a first systematic study on the external charge dynamics occurring in Josephson junction chains, in particular noise correlations. Finally, I aim to use CQPS in a Josephson crystal to realize a frequency-to-current converter. This coherent JC should, under microwave irradiation of frequency f, exhibit exact current quantization I=2nef in multiples n of the electron charge e.
Summary
This project aims at exploring the coherence of Josephson crystals (JC) and to apply this coherence for frequency-to-current conversion. A Josephson crystal can be realized by a Josephson junction chain, formed by repeating a single junction or SQUID in space to form a one-dimensional ladder structure. Such a crystal can show a macroscopic coherent behavior due to the coherent superposition of quantum phase-slips (CQPS), ie the winding of 2 of the superconducting phase-difference occurring on single junctions. This project aims to perform a major breakthrough by addressing the coherence of circuits containing a large number of Josephson junctions. In particular this proposal aims, by novel experiments on Josephson junction chains, to understand the crucial questions of external charge dynamics and dissipation that originates from the many-body effects present in these chains. In order to fight against internal dissipation, I propose novel designs of Josephson junction chains with a disordered or fractal pattern. In addition, I propose to do a first systematic study on the external charge dynamics occurring in Josephson junction chains, in particular noise correlations. Finally, I aim to use CQPS in a Josephson crystal to realize a frequency-to-current converter. This coherent JC should, under microwave irradiation of frequency f, exhibit exact current quantization I=2nef in multiples n of the electron charge e.
Max ERC Funding
1 466 110 €
Duration
Start date: 2013-01-01, End date: 2018-04-30
Project acronym GANOMS
Project GaAs Nano-OptoMechanical Systems
Researcher (PI) Ivan Favero
Host Institution (HI) UNIVERSITE PARIS DIDEROT - PARIS 7
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary "A Nano-OptoMechanical System (NOMS) is an ideal interface between nanomechanical motion and photons. The merits of such a system depend crucially on the level of optical/mechanical coupling. For sufficient coupling, the nanomechanical motion is efficiently imprinted on photons and read-out with the assets of optical detection: broadband, fast, ultra sensitive (ultimately quantum limited). Moreover, in a NOMS, the very dynamics of the motion (its frequency, damping, noise spectrum) can be controlled by optical forces. This opens novel roads for nanomechanical sensing experiments, both classical or quantum, that need now to be experimentally investigated and brought in compliance with future on-chip applications.
This project relies on Gallium-Arsenide (GaAs) disk optomechanical resonators, where photons are stored in high quality factor optical whispering gallery cavities and interact with high frequency (GHz) nanomechanical modes. We have recently shown that these resonators possess a record level of optomechanical coupling and are compatible with on-chip optical integration. The first aim of the project is to investigate in depth the mechanisms leading to optical and mechanical dissipation in GaAs nanoresonators, and obtain GaAs NOMS with ultra-low dissipation. The second aim is to realize prototype nano-optomechanical force measurements with a GaAs disk resonator set in optomechanical self-oscillation, to establish the potential of this novel approach for sensing. This will be done both under vacuum and in a liquid. The behavior of two NOMS integrated on the same chip will also be studied, as first archetype of parallel architectures. A third aim is to operate GaAs NOMS at their quantum limit, using cryogenics, optomechanical cooling and novel concepts where an active optical material like a Quantum dot or Quantum well is inserted in the GaAs NOMS to enhance optomechanical interactions. Transfer of quantum states within a QD-NOMS coupled system will be explored."
Summary
"A Nano-OptoMechanical System (NOMS) is an ideal interface between nanomechanical motion and photons. The merits of such a system depend crucially on the level of optical/mechanical coupling. For sufficient coupling, the nanomechanical motion is efficiently imprinted on photons and read-out with the assets of optical detection: broadband, fast, ultra sensitive (ultimately quantum limited). Moreover, in a NOMS, the very dynamics of the motion (its frequency, damping, noise spectrum) can be controlled by optical forces. This opens novel roads for nanomechanical sensing experiments, both classical or quantum, that need now to be experimentally investigated and brought in compliance with future on-chip applications.
This project relies on Gallium-Arsenide (GaAs) disk optomechanical resonators, where photons are stored in high quality factor optical whispering gallery cavities and interact with high frequency (GHz) nanomechanical modes. We have recently shown that these resonators possess a record level of optomechanical coupling and are compatible with on-chip optical integration. The first aim of the project is to investigate in depth the mechanisms leading to optical and mechanical dissipation in GaAs nanoresonators, and obtain GaAs NOMS with ultra-low dissipation. The second aim is to realize prototype nano-optomechanical force measurements with a GaAs disk resonator set in optomechanical self-oscillation, to establish the potential of this novel approach for sensing. This will be done both under vacuum and in a liquid. The behavior of two NOMS integrated on the same chip will also be studied, as first archetype of parallel architectures. A third aim is to operate GaAs NOMS at their quantum limit, using cryogenics, optomechanical cooling and novel concepts where an active optical material like a Quantum dot or Quantum well is inserted in the GaAs NOMS to enhance optomechanical interactions. Transfer of quantum states within a QD-NOMS coupled system will be explored."
Max ERC Funding
1 495 800 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym LexArt
Project WORDS FOR ART : The rise of a terminology in Europe (1600-1750)
Researcher (PI) Michèle, Alice, Caroline Heck
Host Institution (HI) UNIVERSITE PAUL-VALERY MONTPELLIER3
Call Details Advanced Grant (AdG), SH5, ERC-2012-ADG_20120411
Summary In the prospect of the circulation of concepts and practices and the permeability of artistic boundaries, this research program studies artistic vocabulary as it develops in the XVIIth century and transforms itself in the beginning of the XVIIIth century north of the Alps. Through words, the definition of concepts, the development of glossaries for artists and connoisseurs, and their subsequent insertion into intellectual networks may be grasped. Artistic vocabulary turns out to be a precious site of experimentation for these communities across Europe. Putting into relation artistic practices on one hand, and cultural transfers on the other, this lexicological study opens a new field, linked with the other knowledge domains. From two approaches, diachronic with the analyses of the dissemination of concepts, and synchronic with the study of their context, the purpose of this project is to provide a new research apparatus both reflexive and documentary: a critical dictionary of artistic terminology in French with multilingual entries, a database with the transcription of terms and definitions given by the art theorist themselves, and a volume of theoretical and methodological essays. Our aim is threefold. The first aim is to underline these artistic relations through the circulation of concepts and practices in Europe considered as the space of erudite communication. The second is to show the specificity of some terms and concepts in their own language, and the way they work in connection with the other languages and networks into which they fit, with the purpose of determining the moving boundaries of universality and identity within a culturally diversified geographic space. The third aim is to show that the early modern European artistic community is looking for a common language for the whole Republic of the Arts, which allows for the definition of the numerous artistic experiences which make the diversity of modern Europe.
Summary
In the prospect of the circulation of concepts and practices and the permeability of artistic boundaries, this research program studies artistic vocabulary as it develops in the XVIIth century and transforms itself in the beginning of the XVIIIth century north of the Alps. Through words, the definition of concepts, the development of glossaries for artists and connoisseurs, and their subsequent insertion into intellectual networks may be grasped. Artistic vocabulary turns out to be a precious site of experimentation for these communities across Europe. Putting into relation artistic practices on one hand, and cultural transfers on the other, this lexicological study opens a new field, linked with the other knowledge domains. From two approaches, diachronic with the analyses of the dissemination of concepts, and synchronic with the study of their context, the purpose of this project is to provide a new research apparatus both reflexive and documentary: a critical dictionary of artistic terminology in French with multilingual entries, a database with the transcription of terms and definitions given by the art theorist themselves, and a volume of theoretical and methodological essays. Our aim is threefold. The first aim is to underline these artistic relations through the circulation of concepts and practices in Europe considered as the space of erudite communication. The second is to show the specificity of some terms and concepts in their own language, and the way they work in connection with the other languages and networks into which they fit, with the purpose of determining the moving boundaries of universality and identity within a culturally diversified geographic space. The third aim is to show that the early modern European artistic community is looking for a common language for the whole Republic of the Arts, which allows for the definition of the numerous artistic experiences which make the diversity of modern Europe.
Max ERC Funding
1 679 796 €
Duration
Start date: 2013-04-01, End date: 2018-03-31
Project acronym MOMB
Project Magneto-optics of layered materials: exploring many-body physics in electronic systems with unconventional bands
Researcher (PI) Marek Potemski
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Advanced Grant (AdG), PE3, ERC-2012-ADG_20120216
Summary "The project will explore many-body physics in emergent quantum Hall effect systems (graphitic layers and surface states of topological insulators) and in layered metals of transition metal dichalcogenides using magneto-optical spectroscopy - unconventional for this purpose, but uniquely applicable to these unconventional systems. Studying the inter Landau level excitations (with Raman scattering techniques) in graphene and its bilayer we will test the basic principles of the role of electron-electron interactions in the regime of the quantum Hall effect. Employing high sensitivity microwave absorption methods, we will attempt to solve one of the most controversial issues in the physics of graphene: the nature of the low temperature ground state of the graphene bilayer. The magneto-optical response (in the far-infrared range) of three dimensional topological insulators will be investigated with the aim of demonstrating a new (half odd-integer) quantum Hall effect of their surface states and possible new exotic ground states of single-cone Dirac fermions. Finally, with a fresh experimental approach (cyclotron resonance absorption on NbSe2 and TaS2 and their thin layers) we will shed new light on one of the most intriguing phenomena in strongly correlated systems: competition between an insulating behaviour (charge density wave state in our case) and the ideal-conductor, superconductivity phase."
Summary
"The project will explore many-body physics in emergent quantum Hall effect systems (graphitic layers and surface states of topological insulators) and in layered metals of transition metal dichalcogenides using magneto-optical spectroscopy - unconventional for this purpose, but uniquely applicable to these unconventional systems. Studying the inter Landau level excitations (with Raman scattering techniques) in graphene and its bilayer we will test the basic principles of the role of electron-electron interactions in the regime of the quantum Hall effect. Employing high sensitivity microwave absorption methods, we will attempt to solve one of the most controversial issues in the physics of graphene: the nature of the low temperature ground state of the graphene bilayer. The magneto-optical response (in the far-infrared range) of three dimensional topological insulators will be investigated with the aim of demonstrating a new (half odd-integer) quantum Hall effect of their surface states and possible new exotic ground states of single-cone Dirac fermions. Finally, with a fresh experimental approach (cyclotron resonance absorption on NbSe2 and TaS2 and their thin layers) we will shed new light on one of the most intriguing phenomena in strongly correlated systems: competition between an insulating behaviour (charge density wave state in our case) and the ideal-conductor, superconductivity phase."
Max ERC Funding
1 934 041 €
Duration
Start date: 2013-03-01, End date: 2018-02-28
Project acronym OptoDNPcontrol
Project Optically controlled carrier and Nuclear spintronics: towards nano-scale memory and imaging applications
Researcher (PI) Bernhard Urbaszek
Host Institution (HI) CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Carrier spin states in semiconductor nano-structures can be manipulated with fast optical pulses via the optical selection rules. The electron and hole spins in quantum dots interact strongly with the nuclear spins in the host material via the hyperfine interaction. This allows a new, versatile approach to nuclear spintronics, namely applying fast optical initialisation to carrier states and subsequent transfer via dynamic nuclear polarisation (DNP) of the spin information onto long-lived nuclear spin states, with promising applications in quantum information science and novel nuclear magnetic resonance (NMR) techniques.
This project aims to develop new, efficient optical pumping schemes to maximise DNP by going beyond the established Overhauser effects, investigating the possibility of self-polarization and phase transitions of the nuclear spin ensemble. An innovating aspect of this proposal is to use valence state engineering to tailor the highly anisotropic dipolar interaction between nuclei and holes, which can lead to novel, non-colinear hyperfine coupling.
The next innovation proposed is the development of an all-optical technique AONMR that does not require any radiofrequency (rf) coil set-up capable to control mesoscopic spin ensembles. Contrary to standard NMR techniques based on the generation of macroscopic rf-fields, AONMR can address the nuclear spins in one single nano-object via resonant laser excitation.
A further important target is to use quantum dots and other carrier localisation centres as efficient sources of DNP generation and to carry out a detailed study of the diffusion of DNP throughout the sample and finally across the sample surface, varying key sample (chemical composition, strain, substrate orientation) and experimental parameters such as temperature and applied external fields. These experiments are a feasibility study for using hyperpolarized compound semiconductors for increasing the sensitivity in Magnetic Resonance Imaging (MRI).
Summary
Carrier spin states in semiconductor nano-structures can be manipulated with fast optical pulses via the optical selection rules. The electron and hole spins in quantum dots interact strongly with the nuclear spins in the host material via the hyperfine interaction. This allows a new, versatile approach to nuclear spintronics, namely applying fast optical initialisation to carrier states and subsequent transfer via dynamic nuclear polarisation (DNP) of the spin information onto long-lived nuclear spin states, with promising applications in quantum information science and novel nuclear magnetic resonance (NMR) techniques.
This project aims to develop new, efficient optical pumping schemes to maximise DNP by going beyond the established Overhauser effects, investigating the possibility of self-polarization and phase transitions of the nuclear spin ensemble. An innovating aspect of this proposal is to use valence state engineering to tailor the highly anisotropic dipolar interaction between nuclei and holes, which can lead to novel, non-colinear hyperfine coupling.
The next innovation proposed is the development of an all-optical technique AONMR that does not require any radiofrequency (rf) coil set-up capable to control mesoscopic spin ensembles. Contrary to standard NMR techniques based on the generation of macroscopic rf-fields, AONMR can address the nuclear spins in one single nano-object via resonant laser excitation.
A further important target is to use quantum dots and other carrier localisation centres as efficient sources of DNP generation and to carry out a detailed study of the diffusion of DNP throughout the sample and finally across the sample surface, varying key sample (chemical composition, strain, substrate orientation) and experimental parameters such as temperature and applied external fields. These experiments are a feasibility study for using hyperpolarized compound semiconductors for increasing the sensitivity in Magnetic Resonance Imaging (MRI).
Max ERC Funding
1 495 482 €
Duration
Start date: 2013-02-01, End date: 2018-01-31
Project acronym PhyMorph
Project Unravelling the physical basis of morphogenesis in plants
Researcher (PI) Arezki Boudaoud
Host Institution (HI) ECOLE NORMALE SUPERIEURE DE LYON
Call Details Starting Grant (StG), PE3, ERC-2012-StG_20111012
Summary Morphogenesis is the remarkable process by which a developing organism acquires its shape. While molecular and genetic studies have been highly successful in explaining the cellular basis of development and the role of biochemical gradients in coordinating cell fate, understanding morphogenesis remains a central challenge for both biophysics and developmental biology. Indeed, shape is imposed by structural elements, so that an investigation of morphogenesis must address how these elements are controlled at the cell level, and how the mechanical properties of these elements lead to specific growth patterns. Using plants as model systems, we will tackle the following questions:
i. Does the genetic identity of a cell correspond to a mechanical identity?
ii. Do the mechanical properties of the different cell domains predict shape changes?
iii. How does the intrinsic stochasticity of cell mechanics and cell growth lead to reproducible shapes?
To do so, we will develop a unique combination of physical and biological approaches. For instance, we will measure simultaneously physical properties and growth in specific cell groups by building a novel tool coupling atomic force microscopy and upright confocal microscopy; we will integrate the data within physical growth models; and we will validate our approaches using genetic and pharmacological alterations of cell mechanics.
In plants, shape is entirely determined by the extracellular matrix (cell walls) and osmotic pressure. From that perspective, plants cells involve fewer mechanical parameters than animal cells and are thus perfectly suited to study the physical basis of morphogenesis. Therefore we propose such a study within the shoot apical meristem of Arabidopsis thaliana, a small population of stem cells that orchestrates the aerial architecture of the plant.
This work will unravel the physical basis of morphogenesis and shed light on how stochastic cell behaviour can lead to robust shapes.
Summary
Morphogenesis is the remarkable process by which a developing organism acquires its shape. While molecular and genetic studies have been highly successful in explaining the cellular basis of development and the role of biochemical gradients in coordinating cell fate, understanding morphogenesis remains a central challenge for both biophysics and developmental biology. Indeed, shape is imposed by structural elements, so that an investigation of morphogenesis must address how these elements are controlled at the cell level, and how the mechanical properties of these elements lead to specific growth patterns. Using plants as model systems, we will tackle the following questions:
i. Does the genetic identity of a cell correspond to a mechanical identity?
ii. Do the mechanical properties of the different cell domains predict shape changes?
iii. How does the intrinsic stochasticity of cell mechanics and cell growth lead to reproducible shapes?
To do so, we will develop a unique combination of physical and biological approaches. For instance, we will measure simultaneously physical properties and growth in specific cell groups by building a novel tool coupling atomic force microscopy and upright confocal microscopy; we will integrate the data within physical growth models; and we will validate our approaches using genetic and pharmacological alterations of cell mechanics.
In plants, shape is entirely determined by the extracellular matrix (cell walls) and osmotic pressure. From that perspective, plants cells involve fewer mechanical parameters than animal cells and are thus perfectly suited to study the physical basis of morphogenesis. Therefore we propose such a study within the shoot apical meristem of Arabidopsis thaliana, a small population of stem cells that orchestrates the aerial architecture of the plant.
This work will unravel the physical basis of morphogenesis and shed light on how stochastic cell behaviour can lead to robust shapes.
Max ERC Funding
1 401 023 €
Duration
Start date: 2012-10-01, End date: 2017-09-30