Project acronym Born-Immune
Project Shaping of the Human Immune System by Primal Environmental Exposures In the Newborn Child
Researcher (PI) Klas Erik Petter Brodin
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Summary
Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Max ERC Funding
1 422 339 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym ChemBioAP
Project Elucidation of autophagy using novel chemical probes
Researcher (PI) Yaowen Wu
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS1, ERC-2015-STG
Summary The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Summary
The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CMIL
Project Crosstalk of Metabolism and Inflammation
Researcher (PI) Andreas Bergthaler
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Country Austria
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Summary
Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Max ERC Funding
1 701 011 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym COMPASS
Project Control for Orbit Manoeuvring through Perturbations for Application to Space Systems
Researcher (PI) Camilla Colombo
Host Institution (HI) POLITECNICO DI MILANO
Country Italy
Call Details Starting Grant (StG), PE8, ERC-2015-STG
Summary Space benefits mankind through the services it provides to Earth. Future space activities progress thanks to space transfer and are safeguarded by space situation awareness. Natural orbit perturbations are responsible for the trajectory divergence from the nominal two-body problem, increasing the requirements for orbit control; whereas, in space situation awareness, they influence the orbit evolution of space debris that could cause hazard to operational spacecraft and near Earth objects that may intersect the Earth. However, this project proposes to leverage the dynamics of natural orbit perturbations to significantly reduce current extreme high mission cost and create new opportunities for space exploration and exploitation.
The COMPASS project will bridge over the disciplines of orbital dynamics, dynamical systems theory, optimisation and space mission design by developing novel techniques for orbit manoeuvring by “surfing” through orbit perturbations. The use of semi-analytical techniques and tools of dynamical systems theory will lay the foundation for a new understanding of the dynamics of orbit perturbations. We will develop an optimiser that progressively explores the phase space and, though spacecraft parameters and propulsion manoeuvres, governs the effect of perturbations to reach the desired orbit. It is the ambition of COMPASS to radically change the current space mission design philosophy: from counteracting disturbances, to exploiting natural and artificial perturbations.
COMPASS will benefit from the extensive international network of the PI, including the ESA, NASA, JAXA, CNES, and the UK space agency. Indeed, the proposed idea of optimal navigation through orbit perturbations will address various major engineering challenges in space situation awareness, for application to space debris evolution and mitigation, missions to asteroids for their detection, exploration and deflection, and in space transfers, for perturbation-enhanced trajectory design.
Summary
Space benefits mankind through the services it provides to Earth. Future space activities progress thanks to space transfer and are safeguarded by space situation awareness. Natural orbit perturbations are responsible for the trajectory divergence from the nominal two-body problem, increasing the requirements for orbit control; whereas, in space situation awareness, they influence the orbit evolution of space debris that could cause hazard to operational spacecraft and near Earth objects that may intersect the Earth. However, this project proposes to leverage the dynamics of natural orbit perturbations to significantly reduce current extreme high mission cost and create new opportunities for space exploration and exploitation.
The COMPASS project will bridge over the disciplines of orbital dynamics, dynamical systems theory, optimisation and space mission design by developing novel techniques for orbit manoeuvring by “surfing” through orbit perturbations. The use of semi-analytical techniques and tools of dynamical systems theory will lay the foundation for a new understanding of the dynamics of orbit perturbations. We will develop an optimiser that progressively explores the phase space and, though spacecraft parameters and propulsion manoeuvres, governs the effect of perturbations to reach the desired orbit. It is the ambition of COMPASS to radically change the current space mission design philosophy: from counteracting disturbances, to exploiting natural and artificial perturbations.
COMPASS will benefit from the extensive international network of the PI, including the ESA, NASA, JAXA, CNES, and the UK space agency. Indeed, the proposed idea of optimal navigation through orbit perturbations will address various major engineering challenges in space situation awareness, for application to space debris evolution and mitigation, missions to asteroids for their detection, exploration and deflection, and in space transfers, for perturbation-enhanced trajectory design.
Max ERC Funding
1 499 021 €
Duration
Start date: 2016-08-01, End date: 2021-07-31
Project acronym ComplexSex
Project Sex-limited experimental evolution of natural and novel sex chromosomes: the role of sex in shaping complex traits
Researcher (PI) Jessica Abbott
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary The origin and evolution of sexual reproduction and sex differences represents one of the major unsolved problems in evolutionary biology, and although much progress had been made both via theory and empirical research, recent data suggest that sex chromosome evolution may be more complex than previously thought. The concept of sexual antagonism (when there is a positive intersexual genetic correlation in trait expression but opposite fitness effects of the trait(s) in males and females) has become essential to our understanding of sex chromosome evolution. The goal of this proposal is to understand how the interacting effects of sexual antagonism, sex-linked genetic variation, and sex-specific selection shape the genetic architecture of complex traits. I will test the hypotheses that: 1) individual sexually antagonistic loci are common in the genome, both in separate-sexed species and in hermaphrodites, and drive patterns of sexual antagonism often seen on the trait level. 2) That the response to sex-specific selection in sex-linked loci is usually due to standing sexually antagonistic genetic variation. 3) That sexually antagonistic variation is primarily non-additive in nature. To accomplish this, I will use a combination of approaches, including sex-limited experimental evolution of the X chromosome and reciprocal sex chromosome introgression among distantly related populations of Drosophila, quantitative genetic analysis and experimental evolution mimicking the creation of a novel sex chromosome in the hermaphroditic flatworm Macrostomum, and analytical and simulation modeling. This project will serve to confirm or refute the assumption that trait-level sexual antagonism reflects the contributions of many individual sexually antagonistic loci, increase our understanding of the contribution of coevolution of the sex chromosomes to population divergence, and help provide us with a better general understanding of how genotype maps to phenotype.
Summary
The origin and evolution of sexual reproduction and sex differences represents one of the major unsolved problems in evolutionary biology, and although much progress had been made both via theory and empirical research, recent data suggest that sex chromosome evolution may be more complex than previously thought. The concept of sexual antagonism (when there is a positive intersexual genetic correlation in trait expression but opposite fitness effects of the trait(s) in males and females) has become essential to our understanding of sex chromosome evolution. The goal of this proposal is to understand how the interacting effects of sexual antagonism, sex-linked genetic variation, and sex-specific selection shape the genetic architecture of complex traits. I will test the hypotheses that: 1) individual sexually antagonistic loci are common in the genome, both in separate-sexed species and in hermaphrodites, and drive patterns of sexual antagonism often seen on the trait level. 2) That the response to sex-specific selection in sex-linked loci is usually due to standing sexually antagonistic genetic variation. 3) That sexually antagonistic variation is primarily non-additive in nature. To accomplish this, I will use a combination of approaches, including sex-limited experimental evolution of the X chromosome and reciprocal sex chromosome introgression among distantly related populations of Drosophila, quantitative genetic analysis and experimental evolution mimicking the creation of a novel sex chromosome in the hermaphroditic flatworm Macrostomum, and analytical and simulation modeling. This project will serve to confirm or refute the assumption that trait-level sexual antagonism reflects the contributions of many individual sexually antagonistic loci, increase our understanding of the contribution of coevolution of the sex chromosomes to population divergence, and help provide us with a better general understanding of how genotype maps to phenotype.
Max ERC Funding
1 492 011 €
Duration
Start date: 2016-05-01, End date: 2022-04-30
Project acronym DARKJETS
Project Discovery strategies for Dark Matter and new phenomena in hadronic signatures with the ATLAS detector at the Large Hadron Collider
Researcher (PI) Caterina Doglioni
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary The Standard Model of Particle Physics describes the fundamental components of ordinary matter and their interactions. Despite its success in predicting many experimental results, the Standard Model fails to account for a number of interesting phenomena. One phenomenon of particular interest is the large excess of unobservable (Dark) matter in the Universe. This excess cannot be explained by Standard Model particles. A compelling hypothesis is that Dark Matter is comprised of particles that can be produced in the proton-proton collisions from the Large Hadron Collider (LHC) at CERN.
Within this project, I will build a team of researchers at Lund University dedicated to searches for signals of the presence of Dark Matter particles. The discovery strategies employed seek the decays of particles that either mediate the interactions between Dark and Standard Model particles or are produced in association with Dark Matter. These new particles manifest in detectors as two, three, or four collimated jets of particles (hadronic jets).
The LHC will resume delivery of proton-proton collisions to the ATLAS detector in 2015. Searches for new, rare, low mass particles such as Dark Matter mediators have so far been hindered by constraints on the rates of data that can be stored. These constraints will be overcome through the implementation of a novel real-time data analysis technique and a new search signature, both introduced to ATLAS by this project. The coincidence of this project with the upcoming LHC runs and the software and hardware improvements within the ATLAS detector is a unique opportunity to increase the sensitivity to hadronically decaying new particles by a large margin with respect to any previous searches. The results of these searches will be interpreted within a comprehensive and coherent set of theoretical benchmarks, highlighting the strengths of collider experiments in the global quest for Dark Matter.
Summary
The Standard Model of Particle Physics describes the fundamental components of ordinary matter and their interactions. Despite its success in predicting many experimental results, the Standard Model fails to account for a number of interesting phenomena. One phenomenon of particular interest is the large excess of unobservable (Dark) matter in the Universe. This excess cannot be explained by Standard Model particles. A compelling hypothesis is that Dark Matter is comprised of particles that can be produced in the proton-proton collisions from the Large Hadron Collider (LHC) at CERN.
Within this project, I will build a team of researchers at Lund University dedicated to searches for signals of the presence of Dark Matter particles. The discovery strategies employed seek the decays of particles that either mediate the interactions between Dark and Standard Model particles or are produced in association with Dark Matter. These new particles manifest in detectors as two, three, or four collimated jets of particles (hadronic jets).
The LHC will resume delivery of proton-proton collisions to the ATLAS detector in 2015. Searches for new, rare, low mass particles such as Dark Matter mediators have so far been hindered by constraints on the rates of data that can be stored. These constraints will be overcome through the implementation of a novel real-time data analysis technique and a new search signature, both introduced to ATLAS by this project. The coincidence of this project with the upcoming LHC runs and the software and hardware improvements within the ATLAS detector is a unique opportunity to increase the sensitivity to hadronically decaying new particles by a large margin with respect to any previous searches. The results of these searches will be interpreted within a comprehensive and coherent set of theoretical benchmarks, highlighting the strengths of collider experiments in the global quest for Dark Matter.
Max ERC Funding
1 268 076 €
Duration
Start date: 2016-02-01, End date: 2021-07-31
Project acronym DIALOY
Project Mosaic loss of chromosome Y (LOY) in blood cells - a new biomarker for risk of cancer and Alzheimer’s disease in men
Researcher (PI) Lars Anders Forsberg
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS7, ERC-2015-STG
Summary My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Summary
My recent discoveries show that mosaic loss of chromosome Y (LOY) in peripheral blood is associated with increased risks of cancer and Alzheimer’s disease (AD). These conditions are responsible for >50% of morbidity/mortality in aging men. More than 15% of men older than 70 show some degree of LOY and these men survive on average only half as long as men without LOY. Smoking is strongly associated with LOY and remarkably, the fraction of cells with LOY decreases after cessation of smoking. Cells with LOY can be detected, and disease risks predicted, many years before clinical manifestation of disease. These results of associations between LOY, cancer and smoking have been published in Nature Genetics and Science during 2014.
The overall objective of the proposal is to develop LOY as a new, strong and predictive biomarker. To this end, the research program focuses on three objectives: 1) expanding the study of LOY and associations with disease risks in still larger cohorts; 2) investigating functional aspects of LOY; and 3) develop improved technology for LOY-detection. The successful execution of the project is essential before LOY-testing in clinics can be realized.
Diagnosis of cancer and AD in modern medicine is based on clinical symptoms of disease. Through earlier identification of individuals at increased risk for disease, preventive strategies could be applied, before the severe stages appear. Preliminary results affirm the feasibility of the project and provide proof-of-concept that LOY-tests can be used for early identification of men with increased risks for these diseases. In addition to improving diagnostics and therapeutics; implementation of LOY-testing could prevent smoking-related disease and reduce the health care costs. In the end, LOY-testing could decrease male mortality rates and possibly eliminate the sex-difference in life expectancy. The project will therefore benefit individual patients as well as healthcare systems and society at large.
Max ERC Funding
1 525 000 €
Duration
Start date: 2016-03-01, End date: 2021-02-28
Project acronym EpigenomeProgramming
Project An experimental and bioinformatic toolbox for functional epigenomics and its application to epigenetically making and breaking a cancer cell
Researcher (PI) Christoph Bock
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Country Austria
Call Details Starting Grant (StG), LS2, ERC-2015-STG
Summary Epigenetic alterations can be detected in all cancers and in essentially every patient. Despite their prevalence, the concrete functional roles of these alterations are not well understood, for two reasons: First, cancer samples tend to carry many correlated epigenetic alterations, making it difficult to statistically distinguish relevant driver events from those that co-occur for other reasons. Second, we lack tools for targeted epigenome editing that could be used to validate biological function in perturbation and rescue experiments.
The proposed project strives to overcome these limitations through experimental and bioinformatic methods development, with the ambition of making and breaking cancer cells in vitro by introducing defined sets of epigenetic alterations. We will focus on leukemia as our “model cancer” (given its low mutation rate, frequent defects in epigenetic regulators, and availability of excellent functional assays), but the concepts and methods are general. In Aim 1, we will generate epigenome profiles for a human knockout cell collection comprising 100 epigenetic regulators and use the data to functionally annotate thousands of epigenetic alterations observed in large cancer datasets. In Aim 2, we will develop an experimental toolbox for epigenome programming using epigenetic drugs, CRISPR-assisted recruitment of epigenetic modifiers for locus-specific editing, and cell-derived guide RNA libraries for epigenome copying. Finally, in Aim 3 we will explore epigenome programming (methods from Aim 2) of candidate driver events (predictions from Aim 1) with the ultimate goal of converting cancer cells into non-cancer cells and vice versa.
In summary, this project will establish a broadly applicable methodology and toolbox for dissecting the functional roles of epigenetic alterations in cancer. Moreover, successful creation of a cancer that is driven purely by epigenetic alterations could challenge our understanding of cancer as a genetic disease.
Summary
Epigenetic alterations can be detected in all cancers and in essentially every patient. Despite their prevalence, the concrete functional roles of these alterations are not well understood, for two reasons: First, cancer samples tend to carry many correlated epigenetic alterations, making it difficult to statistically distinguish relevant driver events from those that co-occur for other reasons. Second, we lack tools for targeted epigenome editing that could be used to validate biological function in perturbation and rescue experiments.
The proposed project strives to overcome these limitations through experimental and bioinformatic methods development, with the ambition of making and breaking cancer cells in vitro by introducing defined sets of epigenetic alterations. We will focus on leukemia as our “model cancer” (given its low mutation rate, frequent defects in epigenetic regulators, and availability of excellent functional assays), but the concepts and methods are general. In Aim 1, we will generate epigenome profiles for a human knockout cell collection comprising 100 epigenetic regulators and use the data to functionally annotate thousands of epigenetic alterations observed in large cancer datasets. In Aim 2, we will develop an experimental toolbox for epigenome programming using epigenetic drugs, CRISPR-assisted recruitment of epigenetic modifiers for locus-specific editing, and cell-derived guide RNA libraries for epigenome copying. Finally, in Aim 3 we will explore epigenome programming (methods from Aim 2) of candidate driver events (predictions from Aim 1) with the ultimate goal of converting cancer cells into non-cancer cells and vice versa.
In summary, this project will establish a broadly applicable methodology and toolbox for dissecting the functional roles of epigenetic alterations in cancer. Moreover, successful creation of a cancer that is driven purely by epigenetic alterations could challenge our understanding of cancer as a genetic disease.
Max ERC Funding
1 281 205 €
Duration
Start date: 2016-12-01, End date: 2021-11-30
Project acronym GROWTHPATTERN
Project Coordination Of Patterning And Growth In The Spinal Cord
Researcher (PI) Anna Kicheva
Host Institution (HI) INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Country Austria
Call Details Starting Grant (StG), LS3, ERC-2015-STG
Summary Individuals of the same species vary widely in size, but their organs have reproducible proportions and patterns of cell types. How cell fate specification and tissue growth are coordinated during embryonic development to achieve this reproducibility is a fundamental question in biology. Yet, surprisingly little is known about the underlying mechanisms. A major challenge has been to obtain the quantitative data required to assess the dynamics and variability in growth, pattern and signalling by morphogens – molecules that regulate both cell fate specification and tissue growth. I recently established experimental and theoretical approaches that allowed me to reconstruct with unprecedented resolution the three-dimensional growth and pattern of mouse and chick spinal cord. My data revealed a previously unanticipated role of tissue growth dynamics in controlling pattern reproducibility. This quantitative framework provides an exciting opportunity to elucidate the biophysical and molecular mechanisms of growth and pattern coordination. I will use this unique position to understand: 1) how signalling by multiple morphogens is integrated to control pattern, 2) how morphogens control cell cycle kinetics, 3) how morphogen source and target tissue are coupled to achieve pattern reproducibility. To address these issues, I will build on my experience with quantitative analyses to design novel assays where signalling, cell cycle dynamics and transcriptomes can be precisely measured and manipulated with single cell resolution. I will exploit state-of-the-art genome editing techniques to uncouple the critical feedback links and gain a novel perspective on pattern reproducibility and morphogen function. The project will advance our fundamental understanding of tissue morphogenesis and provide novel insights relevant to understanding information processing by signal transduction cascades, morphogen gradient activity, tissue engineering, and cancer biology.
Summary
Individuals of the same species vary widely in size, but their organs have reproducible proportions and patterns of cell types. How cell fate specification and tissue growth are coordinated during embryonic development to achieve this reproducibility is a fundamental question in biology. Yet, surprisingly little is known about the underlying mechanisms. A major challenge has been to obtain the quantitative data required to assess the dynamics and variability in growth, pattern and signalling by morphogens – molecules that regulate both cell fate specification and tissue growth. I recently established experimental and theoretical approaches that allowed me to reconstruct with unprecedented resolution the three-dimensional growth and pattern of mouse and chick spinal cord. My data revealed a previously unanticipated role of tissue growth dynamics in controlling pattern reproducibility. This quantitative framework provides an exciting opportunity to elucidate the biophysical and molecular mechanisms of growth and pattern coordination. I will use this unique position to understand: 1) how signalling by multiple morphogens is integrated to control pattern, 2) how morphogens control cell cycle kinetics, 3) how morphogen source and target tissue are coupled to achieve pattern reproducibility. To address these issues, I will build on my experience with quantitative analyses to design novel assays where signalling, cell cycle dynamics and transcriptomes can be precisely measured and manipulated with single cell resolution. I will exploit state-of-the-art genome editing techniques to uncouple the critical feedback links and gain a novel perspective on pattern reproducibility and morphogen function. The project will advance our fundamental understanding of tissue morphogenesis and provide novel insights relevant to understanding information processing by signal transduction cascades, morphogen gradient activity, tissue engineering, and cancer biology.
Max ERC Funding
1 499 119 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym HeteroDynamic
Project Evolutionary Stability of Ubiquitous Root Symbiosis
Researcher (PI) Anna Rosling Larsson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary Virtually all terrestrial plants depend on symbiotic interactions with fungi. Arbuscular mycorrhizal (AM) fungi evolved over 450 million years ago, are obligate biotrophs and cannot complete their lifecycle without obtaining carbon from host roots. Mediating nutrient uptake and sequestering carbon in soil this symbiosis lie at the core of all terrestrial ecosystems. Plants on the other hand are facultative mycotrophs but under natural conditions all host roots are colonized as a result of multiple beneficial effects of AM fungi. In the symbiosis, both plants and fungi are promiscuous, forming interactions across individuals and species. In the absence of host-symbiont specificity and given their inability to discriminate among partners prior to interaction, evolutionary theory predicts that “free riders” would evolve and spread. Yet AM fungi remain evolutionary and ecologically successful. I propose that this is thanks to their unique genomic organization, a temporally dynamic heterokaryosis.
Unlike other eukaryotes, AM fungi have no single nucleate stage in their life cycle, instead they reproduce asexually by forming large multinucleate spores. Genetic variation is high and nuclei can migrate and mix within extensive mycelial networks. My group has recently established a single nucleus genomics method to study genetic variation among nuclei within AM fungi. With this method I can resolve the extent of heterokaryosis in AM fungi and its temporal dynamics. I will study the emergence of “free riders” upon intra organismal segregation of genetically distinct nuclei during AM fungal adaptation to host. Further I will study how hyphal fusion and nuclear mixing counteract segregation to stabilize the symbiosis. The research program has great potential for novel discoveries of fundamental importance to evolutionary and environmental biology and will also contribute to agricultural practice and management of terrestrial ecosystems.
Summary
Virtually all terrestrial plants depend on symbiotic interactions with fungi. Arbuscular mycorrhizal (AM) fungi evolved over 450 million years ago, are obligate biotrophs and cannot complete their lifecycle without obtaining carbon from host roots. Mediating nutrient uptake and sequestering carbon in soil this symbiosis lie at the core of all terrestrial ecosystems. Plants on the other hand are facultative mycotrophs but under natural conditions all host roots are colonized as a result of multiple beneficial effects of AM fungi. In the symbiosis, both plants and fungi are promiscuous, forming interactions across individuals and species. In the absence of host-symbiont specificity and given their inability to discriminate among partners prior to interaction, evolutionary theory predicts that “free riders” would evolve and spread. Yet AM fungi remain evolutionary and ecologically successful. I propose that this is thanks to their unique genomic organization, a temporally dynamic heterokaryosis.
Unlike other eukaryotes, AM fungi have no single nucleate stage in their life cycle, instead they reproduce asexually by forming large multinucleate spores. Genetic variation is high and nuclei can migrate and mix within extensive mycelial networks. My group has recently established a single nucleus genomics method to study genetic variation among nuclei within AM fungi. With this method I can resolve the extent of heterokaryosis in AM fungi and its temporal dynamics. I will study the emergence of “free riders” upon intra organismal segregation of genetically distinct nuclei during AM fungal adaptation to host. Further I will study how hyphal fusion and nuclear mixing counteract segregation to stabilize the symbiosis. The research program has great potential for novel discoveries of fundamental importance to evolutionary and environmental biology and will also contribute to agricultural practice and management of terrestrial ecosystems.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-04-01, End date: 2022-03-31