Project acronym ASNODEV
Project Aspirations Social Norms and Development
Researcher (PI) Eliana LA FERRARA
Host Institution (HI) UNIVERSITA COMMERCIALE LUIGI BOCCONI
Country Italy
Call Details Advanced Grant (AdG), SH1, ERC-2015-AdG
Summary Development economists and policymakers often face scenarios in which poor people do not make choices that would help them get out of poverty due to an “aspiration failure”: the poor perceive certain goals as unattainable and do not invest towards those goals, thus perpetuating their own state of poverty. The aim of this proposal is to improve our understanding of the relationship between aspirations and socio-economic outcomes of disadvantaged individuals, in order to answer the question: Can we design policy interventions that shift aspirations in a way that is conducive to development?
In addressing the above question a fundamental role is played by social norms and by the ability of individuals to coordinate on “new” aspirations, hence the analysis of social effects is a salient feature of this proposal.
The proposed research is organized in two workpackages. The first focuses on the media as a vehicle for changing aspirations, examining both commercial TV programs and “educational entertainment”. The second workpackage examines “tailored” interventions designed to address specific determinants of aspiration failures (e.g., psychological support to reduce perceived barriers; inter-racial interaction to change stereotypes; institutional reform to strengthen women’s rights and reduce the gender aspiration gap).
The methodology will involve rigorous evaluation of several interventions directly designed to or indirectly affecting aspirations and social norms. Original data collected through survey work, large administrative datasets and media content analysis will be used.
The results of this project will advance our knowledge on the sources of aspiration failures by poor people and on the interplay between aspirations and social norms, eventually opening the avenue for a new array of anti-poverty policies.
Summary
Development economists and policymakers often face scenarios in which poor people do not make choices that would help them get out of poverty due to an “aspiration failure”: the poor perceive certain goals as unattainable and do not invest towards those goals, thus perpetuating their own state of poverty. The aim of this proposal is to improve our understanding of the relationship between aspirations and socio-economic outcomes of disadvantaged individuals, in order to answer the question: Can we design policy interventions that shift aspirations in a way that is conducive to development?
In addressing the above question a fundamental role is played by social norms and by the ability of individuals to coordinate on “new” aspirations, hence the analysis of social effects is a salient feature of this proposal.
The proposed research is organized in two workpackages. The first focuses on the media as a vehicle for changing aspirations, examining both commercial TV programs and “educational entertainment”. The second workpackage examines “tailored” interventions designed to address specific determinants of aspiration failures (e.g., psychological support to reduce perceived barriers; inter-racial interaction to change stereotypes; institutional reform to strengthen women’s rights and reduce the gender aspiration gap).
The methodology will involve rigorous evaluation of several interventions directly designed to or indirectly affecting aspirations and social norms. Original data collected through survey work, large administrative datasets and media content analysis will be used.
The results of this project will advance our knowledge on the sources of aspiration failures by poor people and on the interplay between aspirations and social norms, eventually opening the avenue for a new array of anti-poverty policies.
Max ERC Funding
1 618 125 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym Born-Immune
Project Shaping of the Human Immune System by Primal Environmental Exposures In the Newborn Child
Researcher (PI) Klas Erik Petter Brodin
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Summary
Immune systems are highly variable, but the sources of this variation are poorly understood. Genetic variation only explains a minor fraction of this, and we are unable to accurately predict the risk of immune mediated disease or severe infection in any given individual. I recently found that immune cells and proteins in healthy twins vary because of non-heritable influences (infections, vaccines, microbiota etc.), with only minor influences from heritable factors (Brodin, et al, Cell 2015). When and how such environmental influences shape our immune system is now important to understand. Birth represents the most transformational change in environment during the life of any individual. I propose, that environmental influences at birth, and during the first months of life could be particularly influential by imprinting on the regulatory mechanisms forming in the developing immune system. Adaptive changes in immune cell frequencies and functional states induced by early-life exposures could determine both the immune competence of the newborn, but potentially also its long-term trajectory towards immunological health or disease. Here, I propose a study of 1000 newborn children, followed longitudinally during their first 1000 days of life. By monitoring immune profiles and recording many environmental influences, we hope to understand how early life exposures can influence human immune system development. We have established a new assay based on Mass Cytometry and necessary data analysis tools (Brodin, et al, PNAS 2014), to simultaneously monitor the frequencies, phenotypes and functional states of more than 200 blood immune cell populations from only 100 microliters of blood. By monitoring environmental influences at regular follow-up visits, by questionnaires, serum measurements of infection, and gut microbiome sequencing, we aim to provide the most comprehensive analysis to date of immune system development in newborn children.
Max ERC Funding
1 422 339 €
Duration
Start date: 2016-07-01, End date: 2021-06-30
Project acronym BrainBIT
Project All-optical brain-to-brain behaviour and information transfer
Researcher (PI) Francesco PAVONE
Host Institution (HI) UNIVERSITA DEGLI STUDI DI FIRENZE
Country Italy
Call Details Advanced Grant (AdG), PE2, ERC-2015-AdG
Summary Exchange of information between different brains usually takes place through the interaction between bodies and the external environment. The ultimate goal of this project is to establish a novel paradigm of brain-to-brain communication based on direct full-optical recording and controlled stimulation of neuronal activity in different subjects. To pursue this challenging objective, we propose to develop optical technologies well beyond the state of the art for simultaneous neuronal “reading” and “writing” across large volumes and with high spatial and temporal resolution, targeted to the transfer of advantageous behaviour in physiological and pathological conditions.
We will perform whole-brain high-resolution imaging in zebrafish larvae to disentangle the activity patterns related to different tasks. We will then use these patterns as stimulation templates in other larvae to investigate spatio-temporal subject-invariant signatures of specific behavioural states. This ‘pump and probe’ strategy will allow gaining deep insights into the complex relationship between neuronal activity and subject behaviour.
To move towards clinics-oriented studies on brain stimulation therapies, we will complement whole-brain experiments in zebrafish with large area functional imaging and optostimulation in mammals. We will investigate all-optical brain-to-brain information transfer to boost an advantageous behaviour, i.e. motor recovery, in a mouse model of stroke. Mice showing more effective responses to rehabilitation will provide neuronal activity templates to be elicited in other animals, in order to increase rehabilitation efficiency.
We strongly believe that the implementation of new technologies for all-optical transfer of behaviour between different subjects will offer unprecedented views of neuronal activity in healthy and injured brain, paving the way to more effective brain stimulation therapies.
Summary
Exchange of information between different brains usually takes place through the interaction between bodies and the external environment. The ultimate goal of this project is to establish a novel paradigm of brain-to-brain communication based on direct full-optical recording and controlled stimulation of neuronal activity in different subjects. To pursue this challenging objective, we propose to develop optical technologies well beyond the state of the art for simultaneous neuronal “reading” and “writing” across large volumes and with high spatial and temporal resolution, targeted to the transfer of advantageous behaviour in physiological and pathological conditions.
We will perform whole-brain high-resolution imaging in zebrafish larvae to disentangle the activity patterns related to different tasks. We will then use these patterns as stimulation templates in other larvae to investigate spatio-temporal subject-invariant signatures of specific behavioural states. This ‘pump and probe’ strategy will allow gaining deep insights into the complex relationship between neuronal activity and subject behaviour.
To move towards clinics-oriented studies on brain stimulation therapies, we will complement whole-brain experiments in zebrafish with large area functional imaging and optostimulation in mammals. We will investigate all-optical brain-to-brain information transfer to boost an advantageous behaviour, i.e. motor recovery, in a mouse model of stroke. Mice showing more effective responses to rehabilitation will provide neuronal activity templates to be elicited in other animals, in order to increase rehabilitation efficiency.
We strongly believe that the implementation of new technologies for all-optical transfer of behaviour between different subjects will offer unprecedented views of neuronal activity in healthy and injured brain, paving the way to more effective brain stimulation therapies.
Max ERC Funding
2 370 250 €
Duration
Start date: 2016-12-01, End date: 2022-05-31
Project acronym CDK6-DrugOpp
Project CDK6 in transcription - turning a foe in a friend
Researcher (PI) Veronika SEXL
Host Institution (HI) VETERINAERMEDIZINISCHE UNIVERSITAET WIEN
Country Austria
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary "Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Summary
"Translational research aims at applying mechanistic understanding in the development of "precision medicine", which depends on precise diagnostic tools and therapeutic approaches. Cancer therapy is experiencing a switch from non-specific, cytotoxic agents towards molecularly targeted and rationally designed compounds with the promise of greater efficacy and fewer side effects.
The two cell-cycle kinases CDK4 and CDK6 normally facilitate cell-cycle progression but are abnormally activated in certain cancers. CDK6 is up-regulated in hematopoietic malignancies, where it is the predominant cell-cycle kinase. The importance of CDK4/6 for tumor development is underscored by the fact that the US FDA selected inhibitors of the kinase activity of CDK4/6 as "breakthrough of the year 2013". Our recent findings suggest that the effects of the inhibitors may be limited as CDK6 is not only involved in cell-cycle progression: ground-breaking research in my group and others has shown that CDK6 is involved in regulation of transcription in a kinase-independent manner thereby driving the proliferation of leukemic stem cells and tumor formation. We have now identified mutations in CDK6 that convert it from a tumor promoter into a tumor suppressor. This unexpected outcome is accompanied by a distinct transcriptional profile. Separating the tumor-promoting from the tumor suppressive functions may open a novel therapeutic avenue for drug development. We aim at understanding which domains and residues of CDK6 are involved in rewiring the transcriptional landscape to pave the way for sophisticated inhibitors. The idea of turning a cancer cell's own most potent weapon against itself is novel and would represent a new paradigm for drug design. Finally, the understanding of CDK6 functions in tumor promotion and maintenance will also result in better patient stratification and improved treatment decisions for a broad spectrum of cancer types."
Max ERC Funding
2 497 520 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym ChemBioAP
Project Elucidation of autophagy using novel chemical probes
Researcher (PI) Yaowen Wu
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS1, ERC-2015-STG
Summary The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Summary
The interest on autophagy, an evolutionarily conserved process in eukaryotes, has enormously increased in the last years, since autophagy is involved in many diseases such as cancer and neurodegenerative disorders. Autophagosome formation is the key process in autophagy. Despite extensive work, the model of autophagosome formation is not yet well established. Some important questions on autophagosome biogenesis remain to be elusive, such as where the bona fide marker protein of autophagosome, LC3, is lipidated, how lipidated LC3 functions in autophagosome formation, and how the proteins for LC3 lipidation and delipidation are involved in autophagosome formation. Although genetic approaches have been useful to identify genes involved in autophagy, they are chronic and thereby the dynamics of phenotypic change cannot be followed, making them not suited for study highly dynamic process such as autophagosome formation. Herein, I propose to develop and use novel chemical probes to address these issues. First, I plan to prepare semi-synthetic caged LC3 proteins and apply them to monitor dynamics of autophagosome formation in the cell in order to address those questions on autophagosome formation. The semi-synthetic LC3 proteins are expected to confer a temporal control and to realize manipulation of protein structure, which renders such studies possible. Second, I intend to develop a versatile approach targeting specific endogenous proteins using a reversible chemically induced dimerization (CID) system, termed as “knock on and off” strategy. I plan to use this approach to elucidate the function of two distinct PI3K complexes in autophagosome formation. On one hand, the establishment of novel approaches will open up a new avenue for studying biological processes. On the other hand, the use of the tool will reveal the mechanism of autophagy.
Max ERC Funding
1 500 000 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym CMIL
Project Crosstalk of Metabolism and Inflammation
Researcher (PI) Andreas Bergthaler
Host Institution (HI) CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH
Country Austria
Call Details Starting Grant (StG), LS6, ERC-2015-STG
Summary Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Summary
Inflammation is a response to noxious stimuli and initiates tissue repair. If resolution fails, however, chronic inflammation develops, which drives tissue damage in many diseases including autoimmunity, cancer and infections. Inflammatory processes are increasingly being appreciated as tightly integrated with metabolic pathways. The molecular crosstalk occurs on different levels including secreted metabolites and cytokines. I hypothesise that this interface of metabolism and inflammation represents a functional rheostat that shapes tissue damage and disease.
Here, I propose to analyse the metabolic and inflammatory processes in a mouse model of chronic viral hepatitis. I chose this model to explore the inflammatory rheostat because the liver is the central organ for metabolism and a hotspot for receiving, processing and distributing local and systemic signals. Cutting-edge technologies including deep sequencing, quantitative proteomics and metabolomics will let us create longitudinal multi-dimensional maps of virus-induced alterations. Paired with immunological, virological and pathological analyses, I expect to identify novel regulatory nodes between metabolism and inflammation. Within our systems-wide experiments and supported by preliminary results, we will specifically focus on the immunomodulatory roles of the metabolite bile acids and oxidative metabolism. These as well as other candidates will be investigated by genetic and pharmacological perturbations in cell culture and in mouse models. Bioinformatics integration of the orthogonal profiling kinetics is expected to reveal novel properties of the molecular networks mediating between metabolism and inflammation.
This proposed cross-disciplinary approach aims to improve our understanding of the crosstalk of metabolism and inflammation. The results of this project may be relevant to viral hepatitis in man and bear broader implications for other inflammatory diseases.
Max ERC Funding
1 701 011 €
Duration
Start date: 2016-04-01, End date: 2021-03-31
Project acronym CohesinMolMech
Project Molecular mechanisms of cohesin-mediated sister chromatid cohesion and chromatin organization
Researcher (PI) Jan-Michael Peters
Host Institution (HI) FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH
Country Austria
Call Details Advanced Grant (AdG), LS1, ERC-2015-AdG
Summary During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Summary
During S-phase newly synthesized “sister” DNA molecules become physically connected. This sister chromatid cohesion resists the pulling forces of the mitotic spindle and thereby enables the bi-orientation and subsequent symmetrical segregation of chromosomes. Cohesion is mediated by ring-shaped cohesin complexes, which are thought to entrap sister DNA molecules topologically. In mammalian cells, cohesin is loaded onto DNA at the end of mitosis by the Scc2-Scc4 complex, becomes acetylated during S-phase, and is stably “locked” on DNA during S- and G2-phase by sororin. Sororin stabilizes cohesin on DNA by inhibiting Wapl, which can otherwise release cohesin from DNA again. In addition to mediating cohesion, cohesin also has important roles in organizing higher-order chromatin structures and in gene regulation. Cohesin performs the latter functions in both proliferating and post-mitotic cells and mediates at least some of these together with the sequence-specific DNA-binding protein CTCF, which co-localizes with cohesin at many genomic sites. Although cohesin and CTCF perform essential functions in mammalian cells, it is poorly understood how cohesin is loaded onto DNA by Scc2-Scc4, how cohesin is positioned in the genome, how cohesin is released from DNA again by Wapl, and how Wapl is inhibited by sororin. Likewise, it is not known how cohesin establishes cohesion during DNA replication and how cohesin cooperates with CTCF to organize chromatin structure. Here we propose to address these questions by combining biochemical reconstitution, single-molecule TIRF microscopy, genetic and cell biological approaches. We expect that the results of these studies will advance our understanding of cell division, chromatin structure and gene regulation, and may also provide insight into the etiology of disorders that are caused by cohesin dysfunction, such as Down syndrome and “cohesinopathies” or cancers, in which cohesin mutations have been found to occur frequently.
Max ERC Funding
2 500 000 €
Duration
Start date: 2016-10-01, End date: 2021-09-30
Project acronym ComplexSex
Project Sex-limited experimental evolution of natural and novel sex chromosomes: the role of sex in shaping complex traits
Researcher (PI) Jessica Abbott
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), LS8, ERC-2015-STG
Summary The origin and evolution of sexual reproduction and sex differences represents one of the major unsolved problems in evolutionary biology, and although much progress had been made both via theory and empirical research, recent data suggest that sex chromosome evolution may be more complex than previously thought. The concept of sexual antagonism (when there is a positive intersexual genetic correlation in trait expression but opposite fitness effects of the trait(s) in males and females) has become essential to our understanding of sex chromosome evolution. The goal of this proposal is to understand how the interacting effects of sexual antagonism, sex-linked genetic variation, and sex-specific selection shape the genetic architecture of complex traits. I will test the hypotheses that: 1) individual sexually antagonistic loci are common in the genome, both in separate-sexed species and in hermaphrodites, and drive patterns of sexual antagonism often seen on the trait level. 2) That the response to sex-specific selection in sex-linked loci is usually due to standing sexually antagonistic genetic variation. 3) That sexually antagonistic variation is primarily non-additive in nature. To accomplish this, I will use a combination of approaches, including sex-limited experimental evolution of the X chromosome and reciprocal sex chromosome introgression among distantly related populations of Drosophila, quantitative genetic analysis and experimental evolution mimicking the creation of a novel sex chromosome in the hermaphroditic flatworm Macrostomum, and analytical and simulation modeling. This project will serve to confirm or refute the assumption that trait-level sexual antagonism reflects the contributions of many individual sexually antagonistic loci, increase our understanding of the contribution of coevolution of the sex chromosomes to population divergence, and help provide us with a better general understanding of how genotype maps to phenotype.
Summary
The origin and evolution of sexual reproduction and sex differences represents one of the major unsolved problems in evolutionary biology, and although much progress had been made both via theory and empirical research, recent data suggest that sex chromosome evolution may be more complex than previously thought. The concept of sexual antagonism (when there is a positive intersexual genetic correlation in trait expression but opposite fitness effects of the trait(s) in males and females) has become essential to our understanding of sex chromosome evolution. The goal of this proposal is to understand how the interacting effects of sexual antagonism, sex-linked genetic variation, and sex-specific selection shape the genetic architecture of complex traits. I will test the hypotheses that: 1) individual sexually antagonistic loci are common in the genome, both in separate-sexed species and in hermaphrodites, and drive patterns of sexual antagonism often seen on the trait level. 2) That the response to sex-specific selection in sex-linked loci is usually due to standing sexually antagonistic genetic variation. 3) That sexually antagonistic variation is primarily non-additive in nature. To accomplish this, I will use a combination of approaches, including sex-limited experimental evolution of the X chromosome and reciprocal sex chromosome introgression among distantly related populations of Drosophila, quantitative genetic analysis and experimental evolution mimicking the creation of a novel sex chromosome in the hermaphroditic flatworm Macrostomum, and analytical and simulation modeling. This project will serve to confirm or refute the assumption that trait-level sexual antagonism reflects the contributions of many individual sexually antagonistic loci, increase our understanding of the contribution of coevolution of the sex chromosomes to population divergence, and help provide us with a better general understanding of how genotype maps to phenotype.
Max ERC Funding
1 492 011 €
Duration
Start date: 2016-05-01, End date: 2021-04-30
Project acronym DARKJETS
Project Discovery strategies for Dark Matter and new phenomena in hadronic signatures with the ATLAS detector at the Large Hadron Collider
Researcher (PI) Caterina Doglioni
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE2, ERC-2015-STG
Summary The Standard Model of Particle Physics describes the fundamental components of ordinary matter and their interactions. Despite its success in predicting many experimental results, the Standard Model fails to account for a number of interesting phenomena. One phenomenon of particular interest is the large excess of unobservable (Dark) matter in the Universe. This excess cannot be explained by Standard Model particles. A compelling hypothesis is that Dark Matter is comprised of particles that can be produced in the proton-proton collisions from the Large Hadron Collider (LHC) at CERN.
Within this project, I will build a team of researchers at Lund University dedicated to searches for signals of the presence of Dark Matter particles. The discovery strategies employed seek the decays of particles that either mediate the interactions between Dark and Standard Model particles or are produced in association with Dark Matter. These new particles manifest in detectors as two, three, or four collimated jets of particles (hadronic jets).
The LHC will resume delivery of proton-proton collisions to the ATLAS detector in 2015. Searches for new, rare, low mass particles such as Dark Matter mediators have so far been hindered by constraints on the rates of data that can be stored. These constraints will be overcome through the implementation of a novel real-time data analysis technique and a new search signature, both introduced to ATLAS by this project. The coincidence of this project with the upcoming LHC runs and the software and hardware improvements within the ATLAS detector is a unique opportunity to increase the sensitivity to hadronically decaying new particles by a large margin with respect to any previous searches. The results of these searches will be interpreted within a comprehensive and coherent set of theoretical benchmarks, highlighting the strengths of collider experiments in the global quest for Dark Matter.
Summary
The Standard Model of Particle Physics describes the fundamental components of ordinary matter and their interactions. Despite its success in predicting many experimental results, the Standard Model fails to account for a number of interesting phenomena. One phenomenon of particular interest is the large excess of unobservable (Dark) matter in the Universe. This excess cannot be explained by Standard Model particles. A compelling hypothesis is that Dark Matter is comprised of particles that can be produced in the proton-proton collisions from the Large Hadron Collider (LHC) at CERN.
Within this project, I will build a team of researchers at Lund University dedicated to searches for signals of the presence of Dark Matter particles. The discovery strategies employed seek the decays of particles that either mediate the interactions between Dark and Standard Model particles or are produced in association with Dark Matter. These new particles manifest in detectors as two, three, or four collimated jets of particles (hadronic jets).
The LHC will resume delivery of proton-proton collisions to the ATLAS detector in 2015. Searches for new, rare, low mass particles such as Dark Matter mediators have so far been hindered by constraints on the rates of data that can be stored. These constraints will be overcome through the implementation of a novel real-time data analysis technique and a new search signature, both introduced to ATLAS by this project. The coincidence of this project with the upcoming LHC runs and the software and hardware improvements within the ATLAS detector is a unique opportunity to increase the sensitivity to hadronically decaying new particles by a large margin with respect to any previous searches. The results of these searches will be interpreted within a comprehensive and coherent set of theoretical benchmarks, highlighting the strengths of collider experiments in the global quest for Dark Matter.
Max ERC Funding
1 268 076 €
Duration
Start date: 2016-02-01, End date: 2021-01-31
Project acronym DELMIT
Project Maintaining the Human Mitochondrial Genome
Researcher (PI) Maria Falkenberg Gustafsson
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS1, ERC-2015-CoG
Summary Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Summary
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Max ERC Funding
1 999 985 €
Duration
Start date: 2016-11-01, End date: 2021-10-31