Project acronym 3DWATERWAVES
Project Mathematical aspects of three-dimensional water waves with vorticity
Researcher (PI) Erik Torsten Wahlen
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Starting Grant (StG), PE1, ERC-2015-STG
Summary The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Summary
The goal of this project is to develop a mathematical theory for steady three-dimensional water waves with vorticity. The mathematical model consists of the incompressible Euler equations with a free surface, and vorticity is important for modelling the interaction of surface waves with non-uniform currents. In the two-dimensional case, there has been a lot of progress on water waves with vorticity in the last decade. This progress has mainly been based on the stream function formulation, in which the problem is reformulated as a nonlinear elliptic free boundary problem. An analogue of this formulation is not available in three dimensions, and the theory has therefore so far been restricted to irrotational flow. In this project we seek to go beyond this restriction using two different approaches. In the first approach we will adapt methods which have been used to construct three-dimensional ideal flows with vorticity in domains with a fixed boundary to the free boundary context (for example Beltrami flows). In the second approach we will develop methods which are new even in the case of a fixed boundary, by performing a detailed study of the structure of the equations close to a given shear flow using ideas from infinite-dimensional bifurcation theory. This involves handling infinitely many resonances.
Max ERC Funding
1 203 627 €
Duration
Start date: 2016-03-01, End date: 2022-02-28
Project acronym 4D-PET
Project Innovative PET scanner for dynamic imaging
Researcher (PI) Jose MarIa BENLLOCH BAVIERA
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Advanced Grant (AdG), LS7, ERC-2015-AdG
Summary The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Summary
The main objective of 4D-PET is to develop an innovative whole-body PET scanner based in a new detector concept that stores 3D position and time of every single gamma interaction with unprecedented resolution. The combination of scanner geometrical design and high timing resolution will enable developing a full sequence of all gamma-ray interactions inside the scanner, including Compton interactions, like in a 3D movie. 4D-PET fully exploits Time Of Flight (TOF) information to obtain a better image quality and to increase scanner sensitivity, through the inclusion in the image formation of all Compton events occurring inside the detector, which are always rejected in state-of-the-art PET scanners. The new PET design will radically improve state-of-the-art PET performance features, overcoming limitations of current PET technology and opening up new diagnostic venues and very valuable physiological information
Max ERC Funding
2 048 386 €
Duration
Start date: 2017-01-01, End date: 2021-12-31
Project acronym BIGSEA
Project Biogeochemical and ecosystem interactions with socio-economic activity in the global ocean
Researcher (PI) Eric Douglas Galbraith
Host Institution (HI) UNIVERSIDAD AUTONOMA DE BARCELONA
Country Spain
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Summary
The global marine ecosystem is being deeply altered by human activity. On the one hand, rising concentrations of atmospheric greenhouse gases are changing the physical and chemical state of the ocean, exerting pressure from the bottom up. Meanwhile, the global fishery has provided large economic benefits, but in so doing has restructured ecosystems by removing most of the large animal biomass, a major top-down change. Although there has been a tremendous amount of research into isolated aspects of these impacts, the development of a holistic understanding of the full interactions between physics, chemistry, ecology and economic activity might appear impossible, given the myriad complexities. This proposal lays out a strategy to assemble a team of trans-disciplinary expertise, that will develop a unified, data-constrained, grid-based modeling framework to represent the most important interactions of the global human-ocean system. Building this framework requires solving a series of fundamental problems that currently hinder the development of the full model. If these problems can be solved, the resulting model will reveal novel emergent properties and open the doors to a range of previously unexplored questions of high impact across a range of disciplines. Key questions include the ways in which animals interact with oxygen minimum zones with implications for fisheries, the impacts fish harvesting may have on nutrient recycling, spatio-temporal interactions between managed and unmanaged fisheries, and fundamental questions about the relationships between fish price, fishing cost, and multiple markets in a changing world. Just as the first coupled ocean-atmosphere models revealed a wealth of new behaviours, the coupled human-ocean model proposed here has the potential to launch multiple new fields of enquiry. It is hoped that the novel approach will contribute to a paradigm shift that treats human activity as one component within the framework of the Earth System.
Max ERC Funding
1 600 000 €
Duration
Start date: 2016-07-01, End date: 2021-12-31
Project acronym BOPNIE
Project Boundary value problems for nonlinear integrable equations
Researcher (PI) Jonatan Carl Anders Lenells
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Summary
The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2022-02-28
Project acronym BSD
Project Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato
Researcher (PI) Victor Rotger cerda
Host Institution (HI) UNIVERSITAT POLITECNICA DE CATALUNYA
Country Spain
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Summary
In order to celebrate mathematics in the new millennium, the Clay Mathematics Institute established seven $1.000.000 Prize Problems. One of these is the conjecture of Birch and Swinnerton-Dyer (BSD), widely open since the 1960's. The main object of this proposal is developing innovative and unconventional strategies for proving groundbreaking results towards the resolution of this problem and their generalizations by Bloch and Kato (BK).
Breakthroughs on BSD were achieved by Coates-Wiles, Gross, Zagier and Kolyvagin, and Kato. Since then, there have been nearly no new ideas on how to tackle BSD. Only very recently, three independent revolutionary approaches have seen the light: the works of (1) the Fields medalist Bhargava, (2) Skinner and Urban, and (3) myself and my collaborators. In spite of that, our knowledge of BSD is rather poor. In my proposal I suggest innovating strategies for approaching new horizons in BSD and BK that I aim to develop with the team of PhD and postdoctoral researchers that the CoG may allow me to consolidate. The results I plan to prove represent a departure from the achievements obtained with my coauthors during the past years:
I. BSD over totally real number fields. I plan to prove new ground-breaking instances of BSD in rank 0 for elliptic curves over totally real number fields, generalizing the theorem of Kato (by providing a new proof) and covering many new scenarios that have never been considered before.
II. BSD in rank r=2. Most of the literature on BSD applies when r=0 or 1. I expect to prove p-adic versions of the theorems of Gross-Zagier and Kolyvagin in rank 2.
III. Darmon's 2000 conjecture on Stark-Heegner points. I plan to prove Darmon’s striking conjecture announced at the ICM2000 by recasting it in terms of special values of p-adic L-functions.
Max ERC Funding
1 428 588 €
Duration
Start date: 2016-09-01, End date: 2022-08-31
Project acronym CATA-LUX
Project Light-Driven Asymmetric Organocatalysis
Researcher (PI) Paolo Melchiorre
Host Institution (HI) FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA
Country Spain
Call Details Consolidator Grant (CoG), PE5, ERC-2015-CoG
Summary Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Summary
Visible light photocatalysis and metal-free organocatalytic processes are powerful strategies of modern chemical research with extraordinary potential for the sustainable preparation of organic molecules. However, these environmentally respectful approaches have to date remained largely unrelated. The proposed research seeks to merge these fields of molecule activation to redefine their synthetic potential.
Light-driven processes considerably enrich the modern synthetic repertoire, offering a potent way to build complex organic frameworks. In contrast, it is extremely challenging to develop asymmetric catalytic photoreactions that can create chiral molecules with a well-defined three-dimensional arrangement. By developing innovative methodologies to effectively address this issue, I will provide a novel reactivity framework for conceiving light-driven enantioselective organocatalytic processes.
I will translate the effective tools governing the success of ground state asymmetric organocatalysis into the realm of photochemical reactivity, exploiting the potential of key organocatalytic intermediates to directly participate in the photoexcitation of substrates. At the same time, the chiral organocatalyst will ensure effective stereochemical control. This single catalyst system, where stereoinduction and photoactivation merge in a sole organocatalyst, will serve for developing novel enantioselective photoreactions. In a complementary dual catalytic approach, the synergistic activities of an organocatalyst and a metal-free photosensitiser will combine to realise asymmetric variants of venerable photochemical processes, which have never before succumbed to a stereocontrolled approach.
This proposal challenges the current perception that photochemistry is too unselective to parallel the impressive levels of efficiency reached by the asymmetric catalysis of thermal reactions, expanding the way chemists think about making chiral molecules
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CC-TOP
Project Cryosphere-Carbon on Top of the Earth (CC-Top):Decreasing Uncertainties of Thawing Permafrost and Collapsing Methane Hydrates in the Arctic
Researcher (PI) oerjan GUSTAFSSON
Host Institution (HI) STOCKHOLMS UNIVERSITET
Country Sweden
Call Details Advanced Grant (AdG), PE10, ERC-2015-AdG
Summary The enormous quantities of frozen carbon in the Arctic, held in shallow soils and sediments, act as “capacitors” of the global carbon system. Thawing permafrost (PF) and collapsing methane hydrates are top candidates to cause a net transfer of carbon from land/ocean to the atmosphere this century, yet uncertainties abound.
Our program targets the East Siberian Arctic Ocean (ESAO), the World’s largest shelf sea, as it holds 80% of coastal PF, 80% of subsea PF and 75% of shallow hydrates. Our initial findings (e.g., Science, 2010; Nature, 2012; PNAS; 2013; Nature Geoscience, 2013, 2014) are challenging earlier notions by showing complexities in terrestrial PF-Carbon remobilization and extensive venting of methane from subsea PF/hydrates. The objective of the CC-Top Program is to transform descriptive and data-lean pictures into quantitative understanding of the CC system, to pin down the present and predict future releases from these “Sleeping Giants” of the global carbon system.
The CC-Top program combines unique Arctic field capacities with powerful molecular-isotopic characterization of PF-carbon/methane to break through on:
The “awakening” of terrestrial PF-C pools: CC-Top will employ great pan-arctic rivers as natural integrators and by probing the δ13C/Δ14C and molecular fingerprints, apportion release fluxes of different PF-C pools.
The ESAO subsea cryosphere/methane: CC-Top will use recent spatially-extensive observations, deep sediment cores and gap-filling expeditions to (i) estimate distribution of subsea PF and hydrates; (ii) establish thermal state (thawing rate) of subsea PF-C; (iii) apportion sources of releasing methane btw subsea-PF, shallow hydrates vs seepage from the deep petroleum megapool using source-diagnostic triple-isotope fingerprinting.
Arctic Ocean slope hydrates: CC-Top will investigate sites (discovered by us 2008-2014) of collapsed hydrates venting methane, to characterize geospatial distribution and causes of destabilization.
Summary
The enormous quantities of frozen carbon in the Arctic, held in shallow soils and sediments, act as “capacitors” of the global carbon system. Thawing permafrost (PF) and collapsing methane hydrates are top candidates to cause a net transfer of carbon from land/ocean to the atmosphere this century, yet uncertainties abound.
Our program targets the East Siberian Arctic Ocean (ESAO), the World’s largest shelf sea, as it holds 80% of coastal PF, 80% of subsea PF and 75% of shallow hydrates. Our initial findings (e.g., Science, 2010; Nature, 2012; PNAS; 2013; Nature Geoscience, 2013, 2014) are challenging earlier notions by showing complexities in terrestrial PF-Carbon remobilization and extensive venting of methane from subsea PF/hydrates. The objective of the CC-Top Program is to transform descriptive and data-lean pictures into quantitative understanding of the CC system, to pin down the present and predict future releases from these “Sleeping Giants” of the global carbon system.
The CC-Top program combines unique Arctic field capacities with powerful molecular-isotopic characterization of PF-carbon/methane to break through on:
The “awakening” of terrestrial PF-C pools: CC-Top will employ great pan-arctic rivers as natural integrators and by probing the δ13C/Δ14C and molecular fingerprints, apportion release fluxes of different PF-C pools.
The ESAO subsea cryosphere/methane: CC-Top will use recent spatially-extensive observations, deep sediment cores and gap-filling expeditions to (i) estimate distribution of subsea PF and hydrates; (ii) establish thermal state (thawing rate) of subsea PF-C; (iii) apportion sources of releasing methane btw subsea-PF, shallow hydrates vs seepage from the deep petroleum megapool using source-diagnostic triple-isotope fingerprinting.
Arctic Ocean slope hydrates: CC-Top will investigate sites (discovered by us 2008-2014) of collapsed hydrates venting methane, to characterize geospatial distribution and causes of destabilization.
Max ERC Funding
2 499 756 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym CFS modelling
Project Chromosomal Common Fragile Sites: Unravelling their biological functions and the basis of their instability
Researcher (PI) Andres Joaquin Lopez-Contreras
Host Institution (HI) AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS
Country Spain
Call Details Starting Grant (StG), LS4, ERC-2015-STG
Summary Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Summary
Cancer and other diseases are driven by genomic alterations initiated by DNA breaks. Within our genomes, some regions are particularly prone to breakage, and these are known as common fragile sites (CFSs). CFSs are present in every person and are frequently sites of oncogenic chromosomal rearrangements. Intriguingly, despite their fragility, many CFSs are well conserved through evolution, suggesting that these regions have important physiological functions that remain elusive. My previous background in genome editing, proteomics and replication-born DNA damage has given me the tools to propose an ambitious and comprehensive plan that tackles fundamental questions on the biology of CFSs. First, we will perform a systematic analysis of the function of CFSs. Most of the CFSs contain very large genes, which has made technically difficult to dissect whether the CFS role is due to the locus itself or to the encoded gene product. However, the emergence of the CRISPR/Cas9 technology now enables the study of CFSs on a more systematic basis. We will pioneer the engineering of mammalian models harbouring large deletions at CFS loci to investigate their physiological functions at the cellular and organism levels. For those CFSs that contain genes, the cDNAs will be re-introduced at a distal locus. Using this strategy, we will be able to achieve the first comprehensive characterization of CFS roles. Second, we will develop novel targeted approaches to interrogate the chromatin-bound proteome of CFSs and its dynamics during DNA replication. Finally, and given that CFS fragility is influenced both by cell cycle checkpoints and dNTP availability, we will use mouse models to study the impact of ATR/CHK1 pathway and dNTP levels on CFS instability and cancer. Taken together, I propose an ambitious, yet feasible, project to functionally annotate and characterise these poorly understood regions of the human genome, with important potential implications for improving human health.
Max ERC Funding
1 499 711 €
Duration
Start date: 2016-05-01, End date: 2022-07-31
Project acronym CHAMELEON
Project Intuitive editing of visual appearance from real-world datasets
Researcher (PI) Diego Gutierrez Perez
Host Institution (HI) UNIVERSIDAD DE ZARAGOZA
Country Spain
Call Details Consolidator Grant (CoG), PE6, ERC-2015-CoG
Summary Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Summary
Computer-generated imagery is now ubiquitous in our society, spanning fields such as games and movies, architecture, engineering, or virtual prototyping, while also helping create novel ones such as computational materials. With the increase in computational power and the improvement of acquisition techniques, there has been a paradigm shift in the field towards data-driven techniques, which has yielded an unprecedented level of realism in visual appearance. Unfortunately, this leads to a series of problems, identified in this proposal: First, there is a disconnect between the mathematical representation of the data and any meaningful parameters that humans understand; the captured data is machine-friendly, but not human friendly. Second, the many different acquisition systems lead to heterogeneous formats and very large datasets. And third, real-world appearance functions are usually nonlinear and high-dimensional. As a result, visual appearance datasets are increasingly unfit to editing operations, which limits the creative process for scientists, engineers, artists and practitioners in general. There is an immense gap between the complexity, realism and richness of the captured data, and the flexibility to edit such data.
We believe that the current research path leads to a fragmented space of isolated solutions, each tailored to a particular dataset and problem. We propose a research plan at the theoretical, algorithmic and application levels, putting the user at the core. We will learn key relevant appearance features in terms humans understand, from which intuitive, predictable editing spaces, algorithms, and workflows will be defined. In order to ensure usability and foster creativity, we will also extend our research to efficient simulation of visual appearance, exploiting the extra dimensionality of the captured datasets. Achieving our goals will finally enable us to reach the true potential of real-world captured datasets in many aspects of society.
Max ERC Funding
1 629 519 €
Duration
Start date: 2016-11-01, End date: 2023-04-30
Project acronym CLOCK
Project CLIMATE ADAPTATION TO SHIFTING STOCKS
Researcher (PI) Elena Ojea
Host Institution (HI) UNIVERSIDAD DE VIGO
Country Spain
Call Details Starting Grant (StG), SH3, ERC-2015-STG
Summary Management of marine fisheries is still far from incorporating adaptation to climate change, even though global stocks are heavily overexploited and climate change is adding additional pressure to the resource. In fact, there is growing evidence that current fisheries management systems may no longer be effective under climate change, and this will translate into both ecological and socioeconomic impacts. This research project argues that the combination of fisheries management science and socio-ecological systems thinking is necessary in order to advance in fisheries adaptation to climate change. To this end, the main objectives are set to: 1) Identify and understand the new challenges raised by climate change for current sustainable fisheries management; 2) Develop a novel approach to fisheries adaptation within a socio-ecological framework; 3) Provide empirical evidence on potential solutions for the adaptation of fisheries management systems; and 4) Help introduce fisheries adaptation at the top of the regional and international adaptation policy agendas. To do this, I will combine model and simulation approaches to fisheries with specific case studies where both biophysical and economic variables will be studied an modelled, but also individuals will be given the opportunity to participate in an active way, learning from participatory methods their preferences towards adaptation and the consequences of the new scenarios climate change poses. Three potential case studies are identified for property rights over stocks, property rights over space, and Marine Reserves in two European and one international case study areas. As a result, I expect to develop a new Adaptation Framework for fisheries management that can be scalable, transferable and easily operationalized, and a set of case study examples on how to integrate theory and participatory processes with the aim of increasing social, ecological and institutional resilience to climate change.
Summary
Management of marine fisheries is still far from incorporating adaptation to climate change, even though global stocks are heavily overexploited and climate change is adding additional pressure to the resource. In fact, there is growing evidence that current fisheries management systems may no longer be effective under climate change, and this will translate into both ecological and socioeconomic impacts. This research project argues that the combination of fisheries management science and socio-ecological systems thinking is necessary in order to advance in fisheries adaptation to climate change. To this end, the main objectives are set to: 1) Identify and understand the new challenges raised by climate change for current sustainable fisheries management; 2) Develop a novel approach to fisheries adaptation within a socio-ecological framework; 3) Provide empirical evidence on potential solutions for the adaptation of fisheries management systems; and 4) Help introduce fisheries adaptation at the top of the regional and international adaptation policy agendas. To do this, I will combine model and simulation approaches to fisheries with specific case studies where both biophysical and economic variables will be studied an modelled, but also individuals will be given the opportunity to participate in an active way, learning from participatory methods their preferences towards adaptation and the consequences of the new scenarios climate change poses. Three potential case studies are identified for property rights over stocks, property rights over space, and Marine Reserves in two European and one international case study areas. As a result, I expect to develop a new Adaptation Framework for fisheries management that can be scalable, transferable and easily operationalized, and a set of case study examples on how to integrate theory and participatory processes with the aim of increasing social, ecological and institutional resilience to climate change.
Max ERC Funding
1 184 931 €
Duration
Start date: 2016-10-01, End date: 2022-09-30