Project acronym Allelic Regulation
Project Revealing Allele-level Regulation and Dynamics using Single-cell Gene Expression Analyses
Researcher (PI) Thore Rickard Hakan Sandberg
Host Institution (HI) KAROLINSKA INSTITUTET
Country Sweden
Call Details Consolidator Grant (CoG), LS2, ERC-2014-CoG
Summary As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Summary
As diploid organisms inherit one gene copy from each parent, a gene can be expressed from both alleles (biallelic) or from only one allele (monoallelic). Although transcription from both alleles is detected for most genes in cell population experiments, little is known about allele-specific expression in single cells and its phenotypic consequences. To answer fundamental questions about allelic transcription heterogeneity in single cells, this research program will focus on single-cell transcriptome analyses with allelic-origin resolution. To this end, we will investigate both clonally stable and dynamic random monoallelic expression across a large number of cell types, including cells from embryonic and adult stages. This research program will be accomplished with the novel single-cell RNA-seq method developed within my lab to obtain quantitative, genome-wide gene expression measurement. To distinguish between mitotically stable and dynamic patterns of allelic expression, we will analyze large numbers a clonally related cells per cell type, from both primary cultures (in vitro) and using transgenic models to obtain clonally related cells in vivo.
The biological significance of the research program is first an understanding of allelic transcription, including the nature and extent of random monoallelic expression across in vivo tissues and cell types. These novel insights into allelic transcription will be important for an improved understanding of how variable phenotypes (e.g. incomplete penetrance and variable expressivity) can arise in genetically identical individuals. Additionally, the single-cell transcriptome analyses of clonally related cells in vivo will provide unique insights into the clonality of gene expression per se.
Max ERC Funding
1 923 060 €
Duration
Start date: 2015-07-01, End date: 2020-12-31
Project acronym BOPNIE
Project Boundary value problems for nonlinear integrable equations
Researcher (PI) Jonatan Carl Anders Lenells
Host Institution (HI) KUNGLIGA TEKNISKA HOEGSKOLAN
Country Sweden
Call Details Consolidator Grant (CoG), PE1, ERC-2015-CoG
Summary The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Summary
The purpose of this project is to develop new methods for solving boundary value problems (BVPs) for nonlinear integrable partial differential equations (PDEs). Integrable PDEs can be analyzed by means of the Inverse Scattering Transform, whose introduction was one of the most important developments in the theory of nonlinear PDEs in the 20th century. Until the 1990s the inverse scattering methodology was pursued almost entirely for pure initial-value problems. However, in many laboratory and field situations, the solution is generated by what corresponds to the imposition of boundary conditions rather than initial conditions. Thus, an understanding of BVPs is crucial.
In an exciting sequence of events taking place in the last two decades, new tools have become available to deal with BVPs for integrable PDEs. Although some important issues have already been resolved, several major problems remain open.
The aim of this project is to solve a number of these open problems and to find solutions of BVPs which were heretofore not solvable. More precisely, the proposal has eight objectives:
1. Develop methods for solving problems with time-periodic boundary conditions.
2. Answer some long-standing open questions raised by series of wave-tank experiments 35 years ago.
3. Develop a new approach for the study of space-periodic solutions.
4. Develop new approaches for the analysis of BVPs for equations with 3 x 3-matrix Lax pairs.
5. Derive new asymptotic formulas by using a nonlinear version of the steepest descent method.
6. Construct disk and disk/black-hole solutions of the stationary axisymmetric Einstein equations.
7. Solve a BVP in Einstein's theory of relativity describing two colliding gravitational waves.
8. Extend the above methods to BVPs in higher dimensions.
Max ERC Funding
2 000 000 €
Duration
Start date: 2016-05-01, End date: 2022-02-28
Project acronym CAPTURE
Project CApturing Paradata for documenTing data creation and Use for the REsearch of the future
Researcher (PI) Isto HUVILA
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH3, ERC-2018-COG
Summary "Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Summary
"Considerable investments have been made in Europe and worldwide in research data infrastructures. Instead of a general lack of data about data, it has become apparent that the pivotal factor that drastically constrains the use of data is the absence of contextual knowledge about how data was created and how it has been used. This applies especially to many branches of SSH research where data is highly heterogeneous, both by its kind (e.g. being qualitative, quantitative, naturalistic, purposefully created) and origins (e.g. being historical/contemporary, from different contexts and geographical places). The problem is that there may be enough metadata (data about data) but there is too little paradata (data on the processes of its creation and use).
In contrast to the rather straightforward problem of describing the data, the high-risk/high-gain problem no-one has managed to solve, is the lack of comprehensive understanding of what information about the creation and use of research data is needed and how to capture enough of that information to make the data reusable and to avoid the risk that currently collected vast amounts of research data become useless in the future. The wickedness of the problem lies in the practical impossibility to document and keep everything and the difficulty to determine optimal procedures for capturing just enough.
With an empirical focus on archaeological and cultural heritage data, which stands out by its extreme heterogeneity and rapid accumulation due to the scale of ongoing development-led archaeological fieldwork, CAPTURE develops an in-depth understanding of how paradata is #1 created and #2 used at the moment, #3 elicits methods for capturing paradata on the basis of the findings of #1-2, #4 tests the new methods in field trials, and #5 synthesises the findings in a reference model to inform the capturing of paradata and enabling data-intensive research using heterogeneous research data stemming from diverse origins.
"
Max ERC Funding
1 944 162 €
Duration
Start date: 2019-05-01, End date: 2024-04-30
Project acronym CONPOL
Project Contexts, networks and participation: The social logic of political engagement
Researcher (PI) Sven Aron Oskarsson
Host Institution (HI) UPPSALA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH2, ERC-2015-CoG
Summary The statement that individuals’ immediate social circumstances influence how they think and act in the political sphere is a truism. However, both theoretical and empirical considerations have often prevented political scientists from incorporating this logic into analyses of political behavior. In the CONPOL project we argue that it is necessary to return to the idea that politics follows a social logic in order to push the theoretical and empirical boundaries in explaining political behavior. That is, people do not act as isolated individuals when confronting complex political tasks such as deciding whether to vote and which party or candidate to vote for. Instead politics should be seen as a social experience in which individuals arrive at their decisions within particular social settings: the family, the peer group, the workplace, the neighborhood. In what way do parents and other family members influence an individual’s political choices? What is the role of workmates and neighbors when individuals arrive at political decisions? Do friends and friends’ friends affect how you think and act in the political sphere? To answer such questions the standard approach to gather empirical evidence on political behavior based on national sample surveys needs to be complemented by the use of population wide register data. The empirical core of the CONPOL project is unique Swedish register data. Via the population registers provided by Statistics Sweden it is possible to identify several relevant social settings such as parent-child relations and the location of individuals within workplaces and neighborhoods. The registers also allow us to identify certain network links between individuals. Furthermore, Statistics Sweden holds information on several variables measuring important political traits. A major aim for CONPOL is to complement this information by scanning in and digitalizing election rolls with individual-level information on turnout across several elections.
Summary
The statement that individuals’ immediate social circumstances influence how they think and act in the political sphere is a truism. However, both theoretical and empirical considerations have often prevented political scientists from incorporating this logic into analyses of political behavior. In the CONPOL project we argue that it is necessary to return to the idea that politics follows a social logic in order to push the theoretical and empirical boundaries in explaining political behavior. That is, people do not act as isolated individuals when confronting complex political tasks such as deciding whether to vote and which party or candidate to vote for. Instead politics should be seen as a social experience in which individuals arrive at their decisions within particular social settings: the family, the peer group, the workplace, the neighborhood. In what way do parents and other family members influence an individual’s political choices? What is the role of workmates and neighbors when individuals arrive at political decisions? Do friends and friends’ friends affect how you think and act in the political sphere? To answer such questions the standard approach to gather empirical evidence on political behavior based on national sample surveys needs to be complemented by the use of population wide register data. The empirical core of the CONPOL project is unique Swedish register data. Via the population registers provided by Statistics Sweden it is possible to identify several relevant social settings such as parent-child relations and the location of individuals within workplaces and neighborhoods. The registers also allow us to identify certain network links between individuals. Furthermore, Statistics Sweden holds information on several variables measuring important political traits. A major aim for CONPOL is to complement this information by scanning in and digitalizing election rolls with individual-level information on turnout across several elections.
Max ERC Funding
1 621 940 €
Duration
Start date: 2016-09-01, End date: 2021-08-31
Project acronym DELMIT
Project Maintaining the Human Mitochondrial Genome
Researcher (PI) Maria Falkenberg Gustafsson
Host Institution (HI) GOETEBORGS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS1, ERC-2015-CoG
Summary Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Summary
Mitochondria are required to convert food into usable energy forms and every cell contains thousands of them. Unlike most other cellular compartments, mitochondria have their own genomes (mtDNA) that encode for 13 of the about 90 proteins present in the respiratory chain. All proteins necessary for mtDNA replication, as well as transcription and translation of mtDNA-encoded genes, are encoded in the nucleus. Mutations in nuclear-encoded proteins required for mtDNA maintenance is an important cause of neurodegeneration and muscle diseases. The common result of these defects is either mtDNA depletion or accumulation of multiple deletions of mtDNA in postmitotic tissues.
The long-term goal (or vision) of research in my laboratory is to understand in molecular detail how mtDNA is replicated and how this process is regulated in mammalian cells. To this end we use a protein biochemistry approach, which we combine with in vivo verification in cell lines. My group was in 2004 the first to reconstitute mtDNA replication in vitro and we have continued to develop even more elaborate system ever since. In the current application, the major focus is studies of the mitochondrial D-loop region, a triple-stranded structure in the mitochondrial genome. The D-loop functions as a regulatory hub and we will determine how initiation and termination of mtDNA replication is controlled from this region. We will also determine the physical organization of the mtDNA replication machinery at the replication fork and establish how mtDNA deletions, a classical hallmark of human ageing, are formed.
Max ERC Funding
1 999 985 €
Duration
Start date: 2016-11-01, End date: 2021-10-31
Project acronym DISLIFE
Project Liveable disabilities: Life courses and opportunity structures across time
Researcher (PI) Lotta Marie Christine Vikstroem
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary In Europe today disabled people comprise some 65 million (10%). Yet they are marginalized in society and research, and little is known on how disabilities become liveable. This project challenges this bias by proposing to investigate ‘liveable disabilities’ as a function of disability and opportunity structures across time. It analyses four life course dimensions: disabled people’s (1) health and well-being; (2) involvement in education and work; (3) in a partner relationship and family; and (4) in leisure structures. Through this I identify liveable disabilities before, during and after the Swedish welfare state. The results are of significant cross-national interest as they form a useful baseline for what constitutes liveable disabilities, which helps governing bodies maximize opportunity structures for disabled people to participate fully in society.
This proposal is unique in employing mixed-methods life course research across time. First, it involves quantitative analysis of Sweden’s long-term digitized population databases, which reflect how disability impacts on people’s educational, occupational, marital and survival chances. The statistical outcome is novel in demonstrating how different impairments intersect with human characteristics relative to society’s structures of the past 200 years. Second, qualitative analyses uncover how disabled people today experience and talk about the above dimensions (1-4) themselves, and how mass media depict them. Third, I make innovative studies of leisure structures, which may promote liveable disabilities.
The proposal aims to establish me at the forefront of disability research. It benefits from my scholarship in history and demography and from three excellent centres at Umeå University I am connected to, funded by the Swedish Research Council. One centre researches populations, another gender. The third provides expertise in disability studies and ready access to stakeholders outside academia.
Summary
In Europe today disabled people comprise some 65 million (10%). Yet they are marginalized in society and research, and little is known on how disabilities become liveable. This project challenges this bias by proposing to investigate ‘liveable disabilities’ as a function of disability and opportunity structures across time. It analyses four life course dimensions: disabled people’s (1) health and well-being; (2) involvement in education and work; (3) in a partner relationship and family; and (4) in leisure structures. Through this I identify liveable disabilities before, during and after the Swedish welfare state. The results are of significant cross-national interest as they form a useful baseline for what constitutes liveable disabilities, which helps governing bodies maximize opportunity structures for disabled people to participate fully in society.
This proposal is unique in employing mixed-methods life course research across time. First, it involves quantitative analysis of Sweden’s long-term digitized population databases, which reflect how disability impacts on people’s educational, occupational, marital and survival chances. The statistical outcome is novel in demonstrating how different impairments intersect with human characteristics relative to society’s structures of the past 200 years. Second, qualitative analyses uncover how disabled people today experience and talk about the above dimensions (1-4) themselves, and how mass media depict them. Third, I make innovative studies of leisure structures, which may promote liveable disabilities.
The proposal aims to establish me at the forefront of disability research. It benefits from my scholarship in history and demography and from three excellent centres at Umeå University I am connected to, funded by the Swedish Research Council. One centre researches populations, another gender. The third provides expertise in disability studies and ready access to stakeholders outside academia.
Max ERC Funding
1 999 870 €
Duration
Start date: 2016-02-01, End date: 2021-07-31
Project acronym DrivenByPollinators
Project Driven by mutualists: how declines in pollinators impact plant communities and ecosystemfunctioning
Researcher (PI) Yann Mats CLOUGH
Host Institution (HI) LUNDS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS8, ERC-2018-COG
Summary Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Summary
Pollinator declines in response to land-use intensification have raised concern about the persistence of plant species dependent on insect pollination, in particular by bees, for their reproduction. Recent empirical studies show that reduced pollinator abundance decreases densities of seedlings of insect-pollinated plants and thereby changes the composition of grassland plant communities. Cascading effects on ecosystem functioning and associated organisms are expected, but to which extent and under which conditions this is the case is yet unexplored. Here, I propose a bold, multi-year, landscape-scale experimental assessment of the extent of pollinator-driven plant community changes, their consequences for associated organisms and important ecosystem functions, and their likely contingency on other factors (soil fertility, herbivory).
Specifically I will:
(1) Set up a network of long-term research plots in landscapes differing in pollinator abundance to measure the changes in plant reproduction over successive years, and assessing experimentally how herbivory and soil fertility mediate these effects.
(2) Explore the individual processes linking pollinators, plant communities and ecosystem functioning using long-term experiments controlling pollinator, herbivore and nutrient availability, focusing on a sample of plant species covering both the dominant species and a diversity of functional traits.
(3) Assess the context-dependence of pollinator-mediated plant community determination by building and applying process-based models based on observational and experimental data, and combine with existing spatially-explicit pollinator models to demonstrate the applicability to assess agri-environmental measures.
This powerful blend of complementary approaches will for the first time shed light on the cornerstone role of this major mutualism in maintaining diverse communities and the functions they support, and pinpoint the risks threatening them and the need for mitigation.
Max ERC Funding
1 998 842 €
Duration
Start date: 2019-09-01, End date: 2024-08-31
Project acronym ECOHERB
Project Drivers and impacts of invertebrate herbivores across forest ecosystems globally.
Researcher (PI) Daniel Metcalfe
Host Institution (HI) UMEA UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), PE10, ERC-2015-CoG
Summary Forests slow global climate change by absorbing atmospheric carbon dioxide but this ecosystem service is limited by soil nutrients. Herbivores potentially alter soil nutrients in a range of ways, but these have mostly only been recorded for large mammals. By comparison, the impacts of the abundant invertebrates in forests have largely been ignored and are not included in current models used to generate the climate predictions so vital for designing governmental policies
The proposed project will use a pioneering new interdisciplinary approach to provide the most complete picture yet available of the rates, underlying drivers and ultimate impacts of key nutrient inputs from invertebrate herbivores across forest ecosystems worldwide. Specifically, we will:
(1) Establish a network of herbivory monitoring stations across all major forest types, and across key environmental gradients (temperature, rainfall, ecosystem development).
(2) Perform laboratory experiments to examine the effects of herbivore excreta on soil processes under different temperature and moisture conditions.
(3) Integrate this information into a cutting-edge ecosystem model, to generate more accurate predictions of forest carbon sequestration under future climate change.
The network established will form the foundation for a unique long-term global monitoring effort which we intend to continue long after the current funding time scale. This work represents a powerful blend of several disciplines harnessing an array of cutting edge tools to provide fundamentally novel insights into an area of direct and urgent importance for the society.
Summary
Forests slow global climate change by absorbing atmospheric carbon dioxide but this ecosystem service is limited by soil nutrients. Herbivores potentially alter soil nutrients in a range of ways, but these have mostly only been recorded for large mammals. By comparison, the impacts of the abundant invertebrates in forests have largely been ignored and are not included in current models used to generate the climate predictions so vital for designing governmental policies
The proposed project will use a pioneering new interdisciplinary approach to provide the most complete picture yet available of the rates, underlying drivers and ultimate impacts of key nutrient inputs from invertebrate herbivores across forest ecosystems worldwide. Specifically, we will:
(1) Establish a network of herbivory monitoring stations across all major forest types, and across key environmental gradients (temperature, rainfall, ecosystem development).
(2) Perform laboratory experiments to examine the effects of herbivore excreta on soil processes under different temperature and moisture conditions.
(3) Integrate this information into a cutting-edge ecosystem model, to generate more accurate predictions of forest carbon sequestration under future climate change.
The network established will form the foundation for a unique long-term global monitoring effort which we intend to continue long after the current funding time scale. This work represents a powerful blend of several disciplines harnessing an array of cutting edge tools to provide fundamentally novel insights into an area of direct and urgent importance for the society.
Max ERC Funding
1 750 000 €
Duration
Start date: 2016-03-01, End date: 2022-02-28
Project acronym EVILTONGUE
Project No Sword Bites So Fiercly as an Evil Tongue?Gossip Wrecks Reputation, but Enhances Cooperation
Researcher (PI) Karoly Takacs
Host Institution (HI) LINKOPINGS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), SH2, ERC-2014-CoG
Summary Social norms in general, and norms of cooperation in particular, are the cement of all human societies. For the difficult problems of the maintenance and enforcement of social norms and of cooperation, humans have developed surprisingly complex solutions. Reputation mechanisms and gossip are certainly among the compound informal solutions.
According to common wisdom, gossip channels mainly negative and often fictitious information. If it is so, how can dishonest gossip and the resulting biased reputations legitimize social order and promote cooperation?
This is the main puzzle we tackle in the proposed project exploiting a wide scale of instruments. We use analytical modeling and agent-based simulation to derive hypotheses. We test simple hypotheses in small group experiments. We develop new methodological tools to appropriately analyze the triadic nature of gossip embedded in network flows of information. We utilize dynamic network datasets from primary and secondary school classes, and we gather qualitative and quantitative information from organizations to test conditional hypotheses about the role that gossip plays in reputation and cooperation in different developmental and social contexts of life. In addition, we apply new communication technologies currently under development to explore the hidden world of gossip and the dynamics of reputations in dormitories and organizations.
With the insights gained, we can overcome common stereotypes about gossip and highlight how gossip is related to credible reputational signals, cooperation, and social order. Expected results will help us to outline the conditions that can promote cooperativeness in work groups, and they will help to construct successful prevention strategies of social exclusion and other potentially harmful consequences of the evil tongue.
Summary
Social norms in general, and norms of cooperation in particular, are the cement of all human societies. For the difficult problems of the maintenance and enforcement of social norms and of cooperation, humans have developed surprisingly complex solutions. Reputation mechanisms and gossip are certainly among the compound informal solutions.
According to common wisdom, gossip channels mainly negative and often fictitious information. If it is so, how can dishonest gossip and the resulting biased reputations legitimize social order and promote cooperation?
This is the main puzzle we tackle in the proposed project exploiting a wide scale of instruments. We use analytical modeling and agent-based simulation to derive hypotheses. We test simple hypotheses in small group experiments. We develop new methodological tools to appropriately analyze the triadic nature of gossip embedded in network flows of information. We utilize dynamic network datasets from primary and secondary school classes, and we gather qualitative and quantitative information from organizations to test conditional hypotheses about the role that gossip plays in reputation and cooperation in different developmental and social contexts of life. In addition, we apply new communication technologies currently under development to explore the hidden world of gossip and the dynamics of reputations in dormitories and organizations.
With the insights gained, we can overcome common stereotypes about gossip and highlight how gossip is related to credible reputational signals, cooperation, and social order. Expected results will help us to outline the conditions that can promote cooperativeness in work groups, and they will help to construct successful prevention strategies of social exclusion and other potentially harmful consequences of the evil tongue.
Max ERC Funding
1 973 500 €
Duration
Start date: 2015-12-01, End date: 2020-11-30
Project acronym EXCHANGE
Project Dynamic Complexes and Allosteric Regulation of Small Molecule Transporters
Researcher (PI) David DREW
Host Institution (HI) STOCKHOLMS UNIVERSITET
Country Sweden
Call Details Consolidator Grant (CoG), LS1, ERC-2018-COG
Summary Solute Carrier (SLC) transporters mediate the translocation of substrates across membranes and after GPCRs represent the second-largest fraction of the human membrane proteome. SLC transporters are critical to cell homeostasis, which is reflected in the fact that more than a quarter is associated with Mendelian disease. Despite a few exceptions, however, they have been under-utilized as drug targets and most of the mechanistic understanding has been derived from bacterial homologues of these medically important proteins. In addition to subtle differences, bacterial homologues will not enable us to establish how the activities of many SLC transporters are allosterically regulated through the binding of accessory factors, e.g., hormones, to their non-membranous globular domains. Understanding the mechanisms by which their activities can be allosterically regulated through these complex and dynamic assembles is critical to human physiology and important for future drug design.
Our model system is a family of transporters known as sodium/proton exchangers (NHEs), which exchange sodium for protons across membranes to aid many fundamental processes in the cell. NHEs are important to the cell cycle, cell proliferation, cell migration and vesicle trafficking and are associated with a wide-spectrum of diseases. Their diverse portfolio is connected to the importance of pH homeostasis, and the binding of many different factors to a large, globular cytosolic domain exquisitely regulates them. To date, we have no structural information for any of the NHE’s, functional assays in liposomes are lacking, and many interaction partners are yet to be validated by in vitro studies. Determining the structure, dynamics, and allosteric regulation of NHEs will be an enormous challenge. However, we envisage that by achieving our objectives, we will reveal important mechanistic insights relevant not just to NHEs, but to many types of SLC transporters.
Summary
Solute Carrier (SLC) transporters mediate the translocation of substrates across membranes and after GPCRs represent the second-largest fraction of the human membrane proteome. SLC transporters are critical to cell homeostasis, which is reflected in the fact that more than a quarter is associated with Mendelian disease. Despite a few exceptions, however, they have been under-utilized as drug targets and most of the mechanistic understanding has been derived from bacterial homologues of these medically important proteins. In addition to subtle differences, bacterial homologues will not enable us to establish how the activities of many SLC transporters are allosterically regulated through the binding of accessory factors, e.g., hormones, to their non-membranous globular domains. Understanding the mechanisms by which their activities can be allosterically regulated through these complex and dynamic assembles is critical to human physiology and important for future drug design.
Our model system is a family of transporters known as sodium/proton exchangers (NHEs), which exchange sodium for protons across membranes to aid many fundamental processes in the cell. NHEs are important to the cell cycle, cell proliferation, cell migration and vesicle trafficking and are associated with a wide-spectrum of diseases. Their diverse portfolio is connected to the importance of pH homeostasis, and the binding of many different factors to a large, globular cytosolic domain exquisitely regulates them. To date, we have no structural information for any of the NHE’s, functional assays in liposomes are lacking, and many interaction partners are yet to be validated by in vitro studies. Determining the structure, dynamics, and allosteric regulation of NHEs will be an enormous challenge. However, we envisage that by achieving our objectives, we will reveal important mechanistic insights relevant not just to NHEs, but to many types of SLC transporters.
Max ERC Funding
1 999 875 €
Duration
Start date: 2019-06-01, End date: 2024-05-31